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INTRODUCTION

The broad purpose of this work is to understand the genetic basis of fracture risk. In
order to accomplish this goal, we are working to detect and identify genes whose segregation
alters bone biomechanical performance in young adult mice. Two crosses are being analyzed;
the first is an intercross of recombinant congenic strains HcB/13 X HcB/14. These strains each
carry 1/8 of their genomes from C57BL/10ScSnA and the remainder from C3H/DiSnA. HcB/13
are highly divergent in their bone properties, but only ~1/4 of the genome segregates in this
cross, allowing analysis of epistatic interactions in a moderately sized cross. The second cross is
between outbred B6C3/Fe-a/a-Cola2®™" heterozygotes and B6C3/Fe-a/a F1 animals. The
B6C3 background is closely related to the HcB/Dem system. In both cases, bones from 4 month
animals will be phenotyped by 3-point bend testing, radiographic analysis, ash percentage,
Fourier-transformed infrared spectroscopy, and histomorphometry. Histograms of the trait
values will be used to select animals for use in linkage mapping, which will then be carried out
using the QTL Cartographer software suite. Linkage mapping of distributed microsatellite
markers will be supplemented by markers isolated through representational difference analysis of
phenotypically extreme animals from each cross. QTLs identified in both crosses will be
isolated through the generation of congenic lines by marker-assisted selection. The approach
taken in this work expands on earlier investigations of bone genetics in that biomechanical
performance is a primary endpoint and that pleiotropy testing of biomechanical outcomes and
sub-phenotypes relates QTLs to specific components of bone strength.

BODY

Progress regarding item 2 of the statement of work has been on schedule, with task 2a
nearly complete and tasks 2b and 2c initiated during year 1. Item 1 of the statement of work is
behind schedule, however, and neither task la or 1b has yet been completed. Tardiness in
accomplishing these tasks is due to delays arising from my moving from the Hospital for Special
Surgery to the University of Wisconsin Medical School. Application for transfer of this award to
the University of Wisconsin and a relinquishing statement from the Hospital for Special Surgery
have been sent under separate cover. Below, progress in task 2 is summarized. This is followed
by a brief discussion of the delay involved in accomplishing task 1.

Statement of Work item 2: Mapping background genes contributing to Cola2"™"* DPhenotypic
variability

a. Phenotypic Analysis

Two hundred twenty five such animals were generated from 10 breeding pairs and sacrificed
at 17 + 1 weeks of age. Both males and females were studied by 3-point bend tests of the left
humeri and several supporting phenotypes. Notably, none of the animals displayed evidence of
spontaneous fracture by fine-focus radiographs obtained at sacrifice. The phenotypic analysis is
summarized in Table 1 below, with mean values + standard deviations givenon the first line of
each cell, with the minimum and maximum values given on the second line of each cell.
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Table 1. Phenotypes of Cola2’™" Heterozygotes

Males (N =119) Females (N = 106)
Body Mass (g) 345+49 26.0+3.8
18.1,45.5 18.5, 36.5
ML OD (mm) 1.46 +0.10 1.36 + 0.09
1.19,1.72 1.08, 1.72
AP OD (mm) 1.00 + 0.08 0.91 +0.07
0.82, 1.20 0.76, 1.10
ML ID (mm) 0.69 +0.09 0.66 + 0.08
0.44,0.92 0.30, 0.84
AP ID (mm) 0.48 +0.07 0.43 +0.06
0.30, 0.66 0.28, 0.60
CSA (mmz) (calculated) 0.89+0.12 0.75+0.10
0.65,1.23 0.56, 1.12
I (mm®) (calculated) 0.15 + 0.04 0.11+0.03
0.07,0.26 0.05, 0.25
Failure Load (N) 8.42 +1.46 7.05 +1.21
5.0,11.8 3.9,10.0
Structural Stiffness (N/mm) 27.84 +6.11 23.21 +5.09
11.9, 40.1 12.5,37.9
Failure Stress (MPa) 75+ 12 80+ 14
(calculated) 42,111 46, 108
Young’s Modulus (MPa) 1390 + 310 1600 + 310
(calculated) 790, 2350 780, 2610

ML = mediolateral, OD = outer diameter, AP = anteroposterior, ID = inner diameter, calculated
indicates that values were calculated from directly measured values, as described in the original
proposal’s methods section.

The data demonstrate marked variation for all the measured phenotypes, generally greater
values for males than females, and overlap between the values obtained in these animals and
those obtained in the HcB/Dem animals summarized in the application for this award and
reported in a manuscript (see appendix 1)(1). Also apparent from these data are greater
diaphyseal diameters, CSAs, and Is and smaller failure loads, failure stresses, and moduli in the
oim/+ heterozygotes relative to the HcB/Dem strains. In this, they are consistent with previously
reported observations in this system (2) and in the Mov-13 system (3). Our phenotypic analyses
of these animals are still incomplete, in that ash analysis is still in progress and bones from
selected animals will be examined by histomorphometry.

As for the HcB/Dem data, we constructed a stepwise regression model for failure load as
a function of other directly measured parameters. The model’s R’ = 0.664 and its equation is
given by:

failure load = - 0.905 + 0.154 stiffness + 2.649 ML OD + 0.0325 mass
The results are quite similar to those obtained in the HcB/Dem studies, with structural stiffness
contributing most of the model’s explanatory power. Again as in the earlier study, forward and
backward analyses yielded the same model. The effect of sex on failure load is completely
accounted for by inclusion of body mass as an explanatory variable.




Robert D. Blank
DAMD17-00-1-0071
Annual Report 4/00-3/01

b. Representational difference analysis of extreme animals

The 225 animals described above have been rank-ordered for each of the traits analyzed
thus far. We have purified genomic DNA from the top and bottom 10 animals of each sex and
initiated representational difference analysis, as per statement of work items 2b and 2c.

Statement of Work Item 1: Intercross between HcB/13 and HcB/14

Progress on this item is approximately 6 months behind the original timetable for this
award. This tardiness is attributable to disruptions in work attending my moving from The
Hospital for Special Surgery to The University of Wisconsin. In September, 2000 I decided to
accept a faculty position at the University of Wisconsin and began preparations to move my
laboratory. Because of this decision, I delayed delivery of the HcB/13 and HcB/14 animals from
Dr. Demant’s laboratory in the Netherlands. I was seeking to minimize the animal issues by
having them moved only once rather than twice. I moved in mid-November, 2000, having
prepared a new animal protocol which was approved by the William Middleton Veterans’
Hospital IACUC and, by reciprocity, The University of Wisconsin’s IACUC (see appendix 2). I
received the animals from the Netherlands in January, 2001. The F1 generation therefore had
not reached the 17-week age of sacrifice by the end of year 1 of the award.

The Packard Multiprobe II purchased for this work was damaged in transit from New
York to Madison, and repairs required over 1 month to complete. This delay, coupled with the
time needed to train a new technician in the operation of this instrument delayed completion of
the additional HcB/Dem genotyping.

Modification of Statement of Work in View of Research Performed to Date

Nothing learned in the fist year of this award suggests that the Statement of Work be
modified in any significant way. The only modification requested is that the timetable be
adjusted as a result of the late start to the breeding program. Please note that I anticipate that
about half of the tardiness can be made up in year 2.

KEY RESEARCH ACCOMPLISHMENTS

e Demonstration that failure loads in Cola2°™"*
range of values

e Demonstration that sub-phenotypes of failure load in Cola2”™ heterozygous animals also
display marked variability

e Demonstration that long bone diaphyseal diameters in Cola2’™ heterozygous animals are
greater than in the HcB/Dem strains, consistent with the previous observation by Bonadio
and colleagues that periosteal expansion in ColaI™*"* mice occurs as an adaptation to
defective type I collagen synthesis

e EBmergence of attenuated bone fragility phenotypes in in Cola2°"*™ homozygous animals
with inbreeding

heterozygous animals span a greater than 2-fold




Robert D. Blank
DAMD17-00-1-0071
Annual Report 4/00-3/01

REPORTABLE OUTCOMES

Manuscripts

The preliminary data included in the original application for this award are reported in a
manuscript scheduled for publication in the June, 2001 issue of The Journal of Bone and Mineral
Research (appendix 1) (1).

A perspective arising from a report by Beamer and associates (4) is also in press at The Journal
of Bone and Mineral Research (appendix 3)(5).

A manuscript describing the use of GC-clamps as an aid to the design of denaturing high
performance liquid chromatography has been submitted to Clinical Chemistry. The reviewers
requested significant revisions of the manuscripts— primarily directed at shortening the report to
approximately %4 of its present length (appendix 4). While not a component of the approved
Statement of Work, this work nevertheless could not have been accomplished without this
award.

Abstracts
The Cola2”™" phenotypic data summarized above were included in an abstract submitted to The
American Society for Bone and Mineral Research 2000 annual meeting (appendix 5).

The Cola2 investigations led to a serendipitous observation of attenuated phenotypes in partially
inbred Cola2°™*™ homozygotes. This observation was presented in an abstract submitted to The
American Society for Bone and Mineral Research 2000 annual meeting (appendix 6).

Representational difference analysis comparison of fully outbred Cola2°™*™ homozygotes and
partially inbred Cola2°™*"™ homozygotes is submitted as an abstract submitted to The American
Society for Bone and Mineral Research 2001 annual meeting (appendix 7).

Geometry as a Heritable Determinant of Bone Strength is submitted as an abstract submitted to
The American Society for Bone and Mineral Research 2001 annual meeting (appendix 8).

Patents and Licenses
None

Degrees Granted
None

Cell Lines and other Biological Reagents
None

Informatics Resources and Models
None

Other Funding
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An application entitled “Phenotypic Attenuation in Murine Osteogenesis Imperfecta” was

submitted to the NIH and assigned number AR48324. This application, with some modification,
will also be submitted to the March of Dimes Birth Defects Foundation.

An application entitled “The Role of Genetic Background in Skeletal Adaptation to Increased
and Decreased Loading” was submitted by Dr. M. C. H. van der Meulen to NASA and includes
me as a consultant. This application relies on the divergence of HcB/13 and HcB/14 bone
properties. '

Employment and other Research Opportunities
None

CONCLUSIONS

Work in year 1 of this award is behind schedule with regard to Item 1 of the Statement of
Work, but on schedule with regard to Item 2. Tardiness in accomplishing Item 1 is attributable
to my move to the University of Wisconsin.

Results arising from Item 2 are consistent with the original study hypothesis that
segregation of background genes contribute to phenotypic variability —among
Cola2’™*heterozygotes. While no spontaneous fractures were observed in those animals, failure
loads ranged from 3.9 to 11.8 N. While males and females differed, stepwise regression analysis
modeling revealed that the apparent sex-related difference in phenotype could be accounted for
by differences in body mass. Notably, both bone anatomy and calculated bone tissue
components of failure load each demonstrated marked variability as well.

Genetic analysis of various other complex traits has demonstrated that mapping QTLs is
in fact only 1 of several steps needed to understand the underlying biology. Another important
step is to decompose the overall phenotype of interest into a series of sub-phenotypes whose
inheritance is oligogenic, e.g. systemic lupus erythematosus (reviewed in (6)). This project is
being conducted with this experience in mind; by mapping loci contributing to a series of related
phenotypes in a single cross, pleiotropy testing allows phenotypic decomposition to be
conducted simultaneously with linkage mapping. This argument is developed more fully in
appendix 3 (5).

The bone community at large has also begun to appreciate the importance of bone
phenotypes other than bone mineral density. The last year has witnessed an increasing number
of publications and abstracts reporting on bone geometry, bone size, and the relation of these
features to biomechanical performance (e.g. (7)). Ultimately, biomechanical performance under
physiologic stresses is the single most important property of bone from the clinical perspective.
Prediction of biomechanical performance is potentially important in the military setting in order
to match personnel with duty assignments that they can perform effectively with minimal risk of

injury.
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Bone Strength énd Related Traits m HcB/Dem
Recombinant Congenic Mice
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and ROBERT D. BLANK*$ S

ABSTRACT

Fracture susceptibility depends jointly on bone mineral content (BMC), gross bone anatomy, and bone’
microarchitecture and quality. Overall, it has been estimated that 50-70% of bone strength is determined
genetically. Because of the difficulty of performing studies of the genetics of bone strength in humans, we have
used the HeB/Dem series of recombinant congenic (RC) mice to investigate this phenotype. We performed a
comprehensive phenotypic analysis of the HcB/Dem strains including morphological analysis of long bones,
measurement of ash percentage, and biomechanical testing, Body mass, ash percentage, and moment of inertia
each correlated moderately but imperfectly with biomechanical performance. Several chromosome regions, on
chromosomes 1, 2, 8, 10, 11, and 12, show sufficient evidence of linkage to warrant closer examination in
further crosses. These studies support the view that shineral content, diaphyseal diameter, and additional
nonmineral material properties contributing to overall bone strength are controlled by distinct sets of genes.
Moreover, the mapping data are consistent with the existence of pleiotropic loci for bone strength-related
phenotypes. These findings show the importance of factors other than mineral content in determining skeletal
performance and that these factors can be dissected genetically. (J Bone Miner Res 2001;16:000—000)

Key words: skeleton, fractures, biomechanics, linkage genetics, quantitative trait

INTRODUCTION fracture history, maternal fracture history, visual acuity,

] height, level of physical activity, eral health status, and

FRACIURES OCCURRING as a consequence of skeletal fra-  use of steroids or anticonvulsant rom epidemiological
gility are an important health problem.® Yet, rela- surveys, some of these additional risk factors appear to be

tively litte is known regarding the determination of bone comparable in importance with BMD but have not been
strength. Most investigations have focused on bone mineral  studied in nearly as great detail. .
density (BMD), because this is a phenotype that is easily Although the morbidity and mortality arising from skel-
and reproducibly measured® and for which pharmacologic ~etal fragility are suffered predominantly by the elderly,
interventions are available.® However, although BMD pos-  many aspects of bone strength are determined early in -
sesses some predictive value with regard to human fracture Jife.® Bone mass peaks at approximately age 30 years, with -
risk, other risk factors have been identified, including past bone mineral loss occurring over the remainder of the life

1These authors contributed equally to this work.

2Mineralized Tissue Section, The Hospital for Special Surgery, New York, New York, USA.

3present Address: State University of New York at Stony Brook Medical School, Stony Brook, New York, USA.
* 4present Address: New York University School of Medicine, New York, New York, USA.

SPresent Address: New York Medical College.
. SWeill Medical College of Cornell University, New York, New York, USA.
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cycle. Both peak bone mass achieved and rate at which bone
loss occurs are complex traits, determined by interactions

" between genetic constitution and environmental factors.

Overall, it has been estimated that 50—70% of bone strength
is determined genetically. ®>9
Because of the difficulty in performing studies of the

genetics of bone strength in humans, we have used the

HcB/Dem series of recombinant congenic (RC) mice to
investigate this phenotype. The RC miice used in this report
are inbred lines descended from third generation backcross
brother-sister pairs in which strain C3H/DiSnA (C3H) was
the background progenitor and C57BL/ScSnA (B10) was
the donor progenitor.*>'” Each of the 27 HcB/Dem strains
carries an average of 12.5% B10 genome, but each has a
different combination of donor and recipient strain alleles.

The chromosome regions derived from each progenitor can -
be determined by genotyping for markers distributed

throughout the genome. Because they are inbred, the results
of mapping apply to all members of the strain and are
cumulative. Phenotyping RC strains allows one to include
multiple individuals as replicates, allowing generation of
sample sizes ‘that are sufficiently large to establish the
presence of small differences between individual strains,
just as is true of any inbred strain.

The experiments reported here were performed to achieve
three objectives. First, we sought to describe the long bone
properties of C3H, B10, and 24 of the HcB/Dem strains.
Failure load, structural stiffness, failure stress, and modulus
were determined through three-point bend tests of the ani-
mals’ left humeri. Middiaphyseal inner diameter (ID) and
outer diameter (OD) cross-sectional area (CSA), and mo-
ment of inertia () were determined through image analysis

of radiographs. Ash percentage of femora from the same -

animals was determined gravimetrically. Body mass and
body mass index (BMI) were determined by weighing and

measuring animals at death. Second, these henotypic data ..

and the published HeB/Dem genotypic data'’®!% were used
to perform quantitative trait locus (QTL) linkage mapping
of the genes that contribute to the measured phenotypes.
Third, we investigated the interrelationships among the var-
jous bone properties by developing multivariate regression
models of failure load and by examining patterns of gleiot-
gw,among the QTLs discovered by linkage analysis. The

ity to define components of biomechanical performance
and map them individually contributes to a deeper under-
standing of how genetic factors determine bone strength
than would the study of any single parameter. This com-
prehensive approach allows simultaneous estimation of the
degree to which individual parameters share common ge-
netic determinants and the contribution of each identified
genomic region to biomechanical performance.

MATERJIALS AND METHODS
Mice

The HcB/Dem strains were established and are main- .

tained at the Netherlands Cancer Institute. Briefly, the HcB/
Dem mice are inbred strains derived from arbitrary pairs of
N3 backcross animals. "' The HcB/Dem strains have
been genotyped at 130 marker loci distributed over each of

NAME: JBMR PAGE: 2 SESS: 9 OUTPUT: Fri Mar 9 09:10:07 2001
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the autosomes.®81% Because they are inbred, individuals
from a single strain have the same genetic composition,
except for néw mutations and residual unfixed chromosome
segiments. 2%20 Less than 5% of the genome was unfixed at
the time of genotyping; residual heterozygosity is expected
to be reduced by half in each generation of inbreeding. The
mice described in this report were provided by Dr. Peter
Demant snd maintained at the Hospital for Special Surgery
until 67 months of age unider 12 h light-dark cycling and

‘fed irradiated PICO 5058 rodent chqc\xnd autoclaved tap

water ad lib. Beamer and colleagues’ have reported that
although mice continué to grow over the lifespan, peak bone
mass is achieved at 4 months of age.”® We examined
strains HcB/1 through HcB/9, HcB11 through HcB/15,
HcB/17, HeB/18, HeB/20 through HeB/23, HeB/25, HcB/
26, HcB/28, and HcB/29. HeB/16 is extinct and HeB/27 is
an unassigned number; so HeB/10, HcB/19, and HcB/24
were unexamined because these strains were unavailable at
the time the experiments described here were performed.
Between 4 and 10 animals of each strain were studied,
yielding 179 HcB/Dem mice. Animals were allowed ad lib
activity and were housed 1-5 animals/cage. Only females
were studied, becausé inclusion of males would have intro-
duced sex-dependent variability in the traits in addition to
the strain-specific and environmental variability already en-
countered. At deathi, body mass and rostroanal length were
measured. This work satisfied The Hospital for Special

-Surgery’s requirements for the ethical use of laboratory

research animals.

Ash percentage

Bone mineral fraction was calculated by comparison of

"dry, defatted bone weight to ash weight of homogenized

tissue.329 We chose to use entire bones rather than bones
from which the epiphyses and marrow have been removed
because the former technique is more reproducible in our
hands. No ash data were obtained from the HcB/6 strain
because of a laboratory accident.

Radiographic analysis

Tmage analysis of fine focus contact radiographs of dis-
sected humeri was performed as described and used to
calculate CSA and 1.%% Humeral length was defined as the
distance along the diaphysis from the trochlea to the hu-
meral head’s most distant point. ODs and IDs were mea-
sured in orthogonal projections just distal to the deltoid
tuberosity, perpendicular to the diaphyseal axis. CSA was
calculated according to the elliptical approximation A

CSA = w(ML OR * AP OR — MLIR * AP IR),
where OR is the outer radius and IR is the inner radius in
either the mediolateral (ML) or anteroposterior (AP) pro-
jection. I also was calculated according to the elliptical
approximation(m i

I = w/A[(ML OR)*(AP OR — (ML IR)*(AP IR)].
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PHENOTYPIC ANALYSIS OF HcB/Dem STRAINS

Image analysis was performed with SigmaScan (Jandel

Scientific) image analysis software. All radiographs in-

cluded stepped aluminum densitometric phantoms. Radio-
graphic images were digitized with 2 Kodak digital camera,
with the photographic field including a lenfh scale.
Biomechanical testing

Quasi-static three-point bend testing was performed on

- left humeri using posts designed and machined in-house

with the MTS apparatus,and Instron_electronics as de-
scribed 2527 Humeri wer® oriented wih the deltoid tuber-
osity downward and the specimens were oriented with the
central post adjacent to the distal end of the deltoid tuber-

osity. This orientation corresponds to the ML axis being .
parallel to the applied force. Posts were separated by 3.75

mm except for the B10 specimens, which were tested at a
post separation of 3.0 mm.

Biomechanical data were analyzed following several im- .

portant assumptions. First, we assumed that bone strength is
determined entirely by the cortical bone in the middiaphy-
sis. Second, we assumed that the humeral diaphysis is an

ellipse with its major axis lying in the ML plane and its .

minor axis lying in the AP axis. Calculated biomechanical

parameters were obtained according to the following stan- -

dard formulas for three-point bending of ellipses®: stress

(0, MPa) = FLc/4l, where F is force, L, is length, and c is

ML OR; strain (¢; mm/mm) = 12¢d/liter®, where ¢ is ML
OR, d is displacement, and L is length; and Young’s Mod-
ulus (E; MPa) = (F/day)XL*/481). .

Linkage analysis

Linkage mapping was carried out using the QTL cartog-
rapher software suite,?% using sib-recombinant inbred as
the cross type. The breeding scheme of RC mice is equiv-
alent to that for recombinant inbred mice except for the fact
that full-sib matings are started after the third backcross
rather than the second filial generation. This breeding
scheme results in multiple opportunities for recombination
to occur before fixation of the genotype. Consequently,
Tinkage relationships are weakened according to the rela-

.
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FIG.1. Body masses, humeral CSAs, and humerat I's for the HcB/
Dem strains. Each bar graph shows the average *1 SD for C3H/

" DiSnA, CS7BL/10ScSnA, and each of the HcB strains tested. Sample

sizes range between 4 and 10 animals/strain.

log-transformed before" analysis. In the specific case of
BMI, the transform was log(1 + BMI). In general, the
a-level was 0.05 with adjustment for multiple comparisons.

‘We used linear regression with stepwise addition and back-

ward elimination to generate the multivariate model for
failure load as a function of the other parameters, using an

- initial inclusion criterion of p < 0.047 for adding parame-

tionship R = 4r/(1 + 6r), where R is the observed fraction -

of*recombinant genotypes and r is the single generation
recombination fraction between a pair of loci. ?%*" Briefly,
data were first analyzed for normality and those traits for
which Fisher's cumulant test for normality®® was signifi-
cant at the 5% level were log-transformed (failure stress,
modulus, body mass, and BMI) before further analysis.
Transformed data were distributed normally by this crite-
rion. Interval mapping was carried out to generate the final
model.#13? A permutation test using 1000 simulated data
sets was ormed to, estimate empirically significance
levels.®3* Linkage maps were plotted with Gnuplot.®®
Linkage maps were generated for strain-averaged data.

Other statistical analysis

All values are shown as the mean = SD. Continuous
variables were analyzed by analysis of variance (ANOVA)

" f test. Phenotypes that were not distributed normally were

ters and a criterion of p < 0.05 for their retention.

- RESULTS
Size and skeletal morphology

The body masses, humeral CSAs, and Is are shown in Fig.
1. The parental strains do not differ with respect to body
mass or CSA, with C3H mice having a body mass of 23.2 &
1.5 g and a CSA of 0.53 £ 0.03 mm? and B10 mice having
a body mass of 254 % 1.4 g and a CSA of 0.55 = 0.04
mm?, However, th? differ markedly with respect to [
(0.044 % 0.005 mm* for C3H and 0.089 * 0.007 mm?* for
B10). Although only 7 differs between the parental strains,
cach of these parameters varies markedly among the HcB/
Dem strains. Mini_muixi and maximum values for the various
parameters and the corresponding strains are shown in Ta-
ble 1. Also included in Table 1 are summary data for the
diaphyseal diameters used to calculate CSA and L The
distribution of values smong the HcB/Dem strains is con-
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- FIG.2. Humeri of the parental strains. ML contact radiographs of (A)
C3H/DiSnA and (B) CS7TBL/10ScSnA are shown.

sistent with segregation between the parental strains con-
tributing to each of these phenotypes. Body masses of the
HcB/Dem strains ranged between 182 £ 05 g (HcB/13)
and 27.9 = 1.3 g (HcB/6). Most HeB/Dem strains had larger
CSAs than the parental strains, ranging from a minimum of
0.49 * 0.06 mm? (HcB/8) to a maximum of 0.72 % 0.05
mm? (HcB/14).

- The magnitude of the differences in CSA and I is shown
in Fig. 2. Although CSA is equal between the parental
strains, the source of their marked difference in I is apparent
from this figure, which shows the striking dissimilarity of
their diaphyseal diameters. Thus, although C3H mice have
a thick diaphyseal cortex and a small diaphyseal diameter,
B10 mice have the converse phenotype. This is reflected in
I, which is proportional to the product of CSA and the
square of the distance of that CSA from the bending axis for
the three-point bending test. The divergence of CSA among

" the HcB/Dem strains arises as a result of dissociation of

diaphyse'a.l diameter from cortical bone thickness. HcB/14

4
TABLE 1. PARENTAL PHENOTYPES AND PHENOTYPIC RANGES
Parentals All strains
o C57BL/ : )
C3H/DiSnA 10ScSnA . Minimum value Maximum value
~ Trait (C3H) (B10) (.md Strain and strain
Body mass (g) 23215 254*14 182 * 0.5 HcB/13 279 + 1.3 HcB/6
BMI (g/cm®) 0.270 + 0.014 0.295 *+ 0.017 0.232 = 0.010 HcB25 0.311 * 0.009 HcB/3
Humeral ML OD (mm) 1.06 *+ 0.03 1.33 £ 0.04 1.02 *+ 0.06 HcB/13 1.33 = 0.04 B10
Humeral AP OD (mm) 0.83 + 0.04 0.96 = 0.04 0.81 =+ 0.05 HcB/8 0.98 :+ 0.02 HcB/14
Humeral ML ID (mm) . 0.53 £0.05 0.89 = 0.09 0.46 = 0.06 HcB/22 0.89 = 0.09 B10
Humeral AP ID (mm) 0.39 +0.03 0.65 x 0.04 - 0:31 = 0.04 HcB/3 0.65 = 0.04 B10
. Humeral CSA (mm?) 0.53 £0.03 0.55 £ 0.04 © 0.49 *+ 0.06 HcB/8 0.72 + 0.05 HcB/14
Humerat / (mm®) 0.044 = 005 0.089 * .007 0.040 = :007 HcB/13 0.089 % .007 B10
- Femoral ash percentage 69.1£11 64219 64.2 =+ 1.9 B10 70.2 + 1.5 HcB/23
Failure load (N) ) 74%+03 7.7+x14 6110 HcB/13 104 + 1.2 HcB/14
Structural stiffness (N/mm) 179 3.7 212 £129 17.2 = 5.2 HcB/18 40.8 £ 8.5 HcB/14
Failure stress (MPa) 173 = 14 87 %11 . - 87 £ 11 B10 192 + 36 HcB/8
Young’s.modulus (MPa). 3570+ 1160 1130 *+ 700 1130 * 700 B10 5340 = 880 HcB/26
has both a thick diaphyseal cortex and a large overall
diameter, while HcB/8 is characterized by a thin cortex and
a small overall diameter.
A .
Biomechanical performance and ash analysis
. We performed quasi-static three-point bending tests of
the left huimeri for each animal. In this test, the fracture is
initiated in the plane of contact between the specimen and
the central post of the apparatus. This protocol allows the
B central post to be placed at a recognizable anatomical site

and measurements of the bone can be made at the same site.
Results of these studies are summarized in Table 1 and Fig.
3. Failure load is one of the most basic measures of struc-
tural strength—the force needed to fracture the bone. The
parental strains do not differ in this parameter, with C3H
mice having a failure load of 7.4 & 0.3 N and B10 mice
having a failure load of 7.7 = 1.4 N. Nevertheless, 2 wide
range of failure loads was observed over the HcB/Dem
strains, from HcB/13's value of 6.1 = 1.0 N to HcB/14’s
value of 10.4 + 1.2 N. A similar pattern is seen for struc-
tural stiffness as well, with C3H having a value of 17.9 *
3.7 N/mm and B10 having a value of 21.2 + 12.9 N/mm.
The most divergent strains are HcB/18 (17.2 * 5.2 N/mm)
and HcB/14 (40.8 = 8.5 N/mm).

It is useful to distinguish between structural and material
properties in considering biomechanical testing data. Struc-
tural properties characterize the specimen as a whole, en-
compassing both its anatomy and its material. The structural
properties are measured directly during the performance of
the test. Material properties, in contrast, are calculated from
the measured structural properties and the measured ana-
tomical parameters. Failure stress is the material analogue to
failure load and corrects for a specimen’s CSA and diameter .
at the break point. In contrast to the data for failure load, the
parental strains have ‘widely divergent failure stresses,
173 + 14 MPa for C3H and 87 * 11 MPa for B10. B10's
failure stress is the minimum for the strains studied and
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FIG. 3. Biomechanical performance of the HcB/Dem strains. Each
bar graph shows the average *1 SD for C3H/DiSnA, C57BL/
10ScSnA, and each of the HcB strains tested. Sample sizes range
between 4 and 10 animals/strain.

MOUSE STRAN

HcB/8's value of 192 % 36 MPa is the maximum. Young's
modulus is the material measure of stiffness; the parental
strains’ difference in failure stress is reflected by their
moduli as well, with C3H having a modulus of 3570 = 1160
MPa and B10 having a modulus of 1130 * 700 MPa. B10
has the least stiff bone tissue observed in this study, whereas
HcB/26, with a modulus of 5340 = 880 MPa, has the
stiffest bone tissue observed. These data show that both
structural and ‘material strength and stiffness vary widely
among the HcB/Dem strains.

As a first step in characterizing the contribution of mate-
rial properties to overall biomechanical performance, we
performed ash analysis of femora from the same animals
used for biomechanical testing. Ash percentage reflects the
mineral content of the bone tissue and is the parameter most
closely related to clinical measurements of BMD or bone
mineral content (BMC). The results are summarized in

Table 1 and Fig. 3 and show that C3H, with 2 value of.

69.1 = 1,1%, and B10, with a value of 64.2 * 1.9%, differ
markedly for this parameter. B10 has the minimum ash
percentage of the strains studied and HeB/23, with a value
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of 70.2 * 1.5%, has the maximum ash percentage. Thus,
substantial variations exist in the mineral content of bones
from the HcB/Dem strains.

Contiibutions of the measured parameters to bone
strength i

Data presented in the previous section show that marked
variations in animal size, anatomy as reflected by diaphyseal
diameter and 7, and BMC exist among the HcB/Dem strains
and each of these are expected to contribute to differences in
biomechanical performance among them. As an initial step in
understanding the contribution of each of these parameters to
biomechanical performance, we performed a simple correla-
tion analysis of each of the parameters in a pairwise fashion,
after log-transforming data for parameters with skewed distri-
butions. Results of this analysis ar¢ summarized in Table 2.

We used these data to guide ive addition/
elimination and eliminatiori only stepwise regression analyses
of failure load as a liniear function of the other traits (Table 3).
Such models express a single variable, in this case failure load,
as a linear function of a subset of the other measured variables
and an intercept given by the constant term of the equation.
These other variables are included in the model only if they
add to the model’s explanatory power, as reflected by an
increase in R2. A perfect model has an B> = 1.0 and the R®
value gives the fraction of the variation in failure load that is
attributablé to variation in the other traits.

In the first model, we used all other measured parameters
as possible -independent variables. This model found that
over 90% of the failure. load could be accounted for as a

_ function of log(failuré stress), CSA, and I. The model’s R?

"= 0.906 and its equation is

failure load = —39.83 + 18.63 log(failure stress)
’ + 593CSA + 61771

.

This model, although accounting for over 90% of the failure
stress, is limited by the fact that failure stress is a function
of load and 1. )

In the second model, we allowed only variables that were -
measured directly rather than calculated from measured :
quantities. This model had poorer predictive ability, ac-
counting for nearly 57% of failure load. Its R? = 0.568 and
its equation is given by '

failure load = —13.48 + 551 log(structural stiffness)
+ 0.11ash% + 4.19 log(body mass) + 197 AP ID.

The majority of the explanatory power of this model came
from the structural stiffness, which by itself explained 50%
of the failure load. In both models, the same results were
-obtained by stepwise addition/elimination and elimination-
only analyses.

Mapping of loci contributing to the phenotypes
Previously published genotypic data were used with the

phenotypic analysis desctibed previously to map Toci con-

tributing to each of the studied traits. The mapping data for
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TABLE 2. CORRELATIONS AMONG BONE PARAMETERS
Structure ﬁ . oo Body
Parameters  stiffness  Stress Modulus  Ash % I CSA MLOD MLID . APOD APID mass BMI
Load 0714 0236 0272 0505 . 0.707 0.726 0.655 0275 0.442 0294 0454 0236
<0001 0002 <0001 0014 <0001 <0001 <0001 <000L <0.001 <0001 <0.001 0.002
a.lj Su-uchlrl —_ NS 0.581 0.168 0.461 0.484 0.456 0227 0437 0.293 0.363 0.171
Ll{)% g W <0001 003 <0001 <0001 <0.001 0003 <000t <0001 <0.001 0.023
Stress — 0.685 NS -0674 —0641 -0636 —0331 -0523 0303 -—0.153 NS
\J( <0.001 <0.001 <0001 <0001 <0001 <0001 <0.001 0.046
S, @ Modulus. - | - NS . —0388 .—0328 —0412 ~0272.. —0211 °~ NS NS NS
e ' - <0001 <0001 <0001 <0001 . 0.006
- Ash% ' - NS  —0449 ° NS NS . 0157 NS 0269 NS
' E : : 0.032 N 171 0.001 _
1 —_ 0.893 0.959 0566 - 0716 0462 0.461 0.192
) <0.001 <0001 <0001 <0001 <0001 <0001 0.012.
CSA — 0787 0228 & 0.798 0277 0507 0234
: <0001 <0001 <0001 <0001 <0.001 0.002
ML OD St 0649° 0.533 0372 0.454 0.222
: <0.001 - <0001 <0001 <0001  0.003
ML ID — . 0289 ‘0267 NS NS
. <0001 = <0.001 .
AP OD — 0.666 0.308 NS
<0001  <0.001 -
AP ID - NS ° NS
Body mass . — 0.786
<0001
Parameters were log-transformed before analysis. Significant correlation oocfﬁcxcnts are shown on the top line and their associated p
values are shown on the second line of each cell. .
TABLE 3. STEPWISE REGRESSION MODELS OF FAILURE LOAD : ;
74
Step Parameter @ Coefficient* @
" Model 1. All parametcrs mcluded as potential mdependent vanables
1 Log(structural stiffness) - <0.001 . 0.432
2 ML OD <0.001 . 0.0519
3 Log(stress) . <0.001' 18.626 0.302
4 CSA <0.001 1 5.927 0.113
5 1 . ‘ <0.001 61.774 0.011
6 Remove log(structural stiffness) 0.126 -0.001
7 Remove ML OD - - 0.059 -0.002
: Model 2. Only directly measured parameters included as potenttal mdependent variables
1 Log(structural stiffness) - <0.001 5514 0.503
2 Log(body mass) <0.001 4192 0.040
3 Ash% 0.025 0.111 0.013
4 APID 0.035 11973 0.012
* The coefficient is included only for those parameters retained in the final model.
F4 selected chromosomes are summarizéd in Fig. 4, Mapping summarized in Table 4. As shown in Fig. 4, none of the
AQ:6 data for other traits (data not shown) reveal that LOD score su'am-averaged QTL peaks achieved experiment-wide sta-

graphs for all the diaphyseal diameters closely parallel each
other. This also is true of CSA, , failure stress, and mod-
ulus, which are calculated using the diaphyseal diameters.
Because these parameters are codependent, only 7 is in-
cluded in Fig. 4 along with the independently measured
traits of failure load, structural stiffness, ash percentage, and

~ body mass.

. We performed a 1000-iteration permutation test to esti-
mate experiment-wide s1gmﬁcance levels for each trait as

tistical significance, 37 regions on multiple chromosomes
had LOD scores in excess of 1.7. An LOD = 1 threshold is
commonly used for exploratory genome scans of complex
traits in a staged searching strategy. 36 Howeéver, given that
we performed lmkagc mapping for five independently mea-
sured traits, it is appropriate to raise the exploratory thresh-
old to the Bonferroni-corrected value of LOD = 1.7.

On several chromosomes, LOD peaks for different traits
map to the same genomic locations. Overlapping mapping
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FIG. 4. Linkage maps for five traits. Linkage maps for failure load (red diamonds), structural stiffness (green + signs), ash percentage (blue
squares), I (magenta X's), and body mass (navy triangles) are shown for each autosome in which the maxiroum LOD for any trait exceeded 1.0.
The X dimension measures position in morgans (1 M = 100 cM) from the most céntromeric marker. No “tails” flanking the outermost markers
are included in the maps. The Y dimension measures LOD score. Marker positions are indicated below the x axis. ’
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TABLE 4. EXPERIMENTAL-WIDE SIGNIFICANCE LEVELS n\

Significance level " Load Structural stiffness Ash% @} Mafs
0.01 345 322 296 347 352 -
0.025 3.01 3.03 277 322 317
0.05 271 279 2.55 292 2.88
0.10 245 244 2.62 2.59

241

assignments are consistent with the existence of pleiotropic

(affecting multiple traits) QTLs at these locations. The
degree of overlap among the mapping assignments is vari-
able. Failure load and structural stiffness linkage maps are
nearly parallel throughout the genome. A lesser degree of
overlap is seen between failure load and I, and even less is
observed between failure load and ash percentage. The
linkage data suggest that there are distinct but overlapping
sets of QTLs that contribute to each of the bone strength—-
related traits shown in the HcB/Dem system. This is well
illustrated in comparing the maps of chromosomes 1 and 10
(Fig. 4). On chromosome 1, a peak centered at DIMitl0
includes failure load, structural stiffness, 1, and body mass,
but not ash percentage. Conversely, the peak on chromo-
some 10 centered on DIOMit3 includes failure load, struc-
tural stiffness, and ash percentage but not I or body mass.

DISCUSSION

This report presents bone phenotypes for 24 of the 27
HcB/Dem RC strains. These strains span nearly a 2-fold
range of failure loads and vary widely for multiple related
traits. Many phenotype pairs, even excluding those that are
trivially related, display significant correlations. A multivar-
jate linear regression model including only traits that were
measured directly accounts for more than half the difference
in failure load among the strains. The phenotypic data were
used to generate the QTL maps for five independently
measured traits in the HcB/Dem strains shown in Fig. 4.

The linkage maps reveal that potential QTLs for distinct
traits sometimes colocalize to a single position in the ge-
nome, which we interpret as the presence of a single gene
with pleiotropic effects (affecting multiple traits) at each
multitrait LOD peak. An alternative explanation for colo-
calization is that distinct but closely linked QTLs are re-

sponsible for each of the phenotypes. Although the plgiot:,

?px. and multiple linked gene models cannot be
istinguished by our data, the pleiotropy model is both more
economical and consistent with present understanding of
bone strength. Our data reveal coincident LOD peaks for
distinct subsets of the traits at several positions in the
genome. There is prior evidence relating these traits to
failure load. ®52738~4 The existence of pleiotropic QTLs
would provide a biological basis for the observed clinical
correlations between body mass and bone strength. The
biological importance of these putative pleiotropic loci is
reinforced by the fact that they are based on very different,
independently measured phenotypes. Mechanistically,
pleiotropy most likely reflects the many developmental and
biochemical steps separating the products of the putative

. coincidence of peaks for multiple, independently measured

pleiotropic loci and the measured phenotypes. If one accepts
the pleiotropy interpretation, it also is worth noting that
colocalization of LOD peaks for multiple independent traits
mitigates lack of statistical significance for linkage assign-
ments. Permutation tests determine the frequency with
which peaks of a given LOD threshold will occur anywhere
in the genome by chance alone. Because there are many
genomic locations where artifactual LOD peaks may occur,

traits can be interpreted more plausibly as representing
biology rather than statistical accident. On this basis, we
would predict that further experiments in this system are

more likely to find significant QTLs on chromosomes l,v 10,

and 11 than on chromosomes 2, 8, and 12. .

In the linkage analysis, LOD scores may be increased
because-of epistasis between specific locus pairs. In previ-
ous work, Demant and colleagues showed large epistatic
interactions between tumor susceptibility loci.“%? The

- small number of genotypes studied here will tend to mag-

nify the contributions of individual loci, because main ef-
fects cannot be distinguished from interactions. These lim-

jtatioris of the data presented here can best be addressed by

performing additional crosses; these are in progress.

~ Genetic differences are believed to account for a substan-

tial portion of the variability in the bone strength of both

"mice and humans. In mice, Beamer and colleagues have

measured volumetric BMD and cortical thickness by quan-
titative computed tomography (CT) scanning in a panel of
11 inbred mouse strains, noting that C57BLJ6J and C3H/
He)J are the most extreme strains in their sample for these
parameters.®? These strains are related closely to the pro-
genitors of the HcB/Dem RC strains. These investigators,
have begun to map volumetric BMD in crosses between
C57BL/6J and CAST/EiJ“™ and between C57BL/6J and
C3H/Hel.“® In these crosses, a highly significant QTL
centered at DI1Mit15 falls in a region that may overlap with
our LOD peak centered at DIMitl0. Two groups have
studied the genetic basis of peak bone mass in the SAM/P6
senescence-accelerated, osteoporotic mouse. Shimizu and
colleagues®” used a midfemoral cortical thickness index as
a measure of bone mass in a cross between SAMP6 and
SAMP2, reporting a highly significant QTL on chromosome
11 between DI1IMit90 and D11Mit59 that may overlap our
peak on that chromosome. Benes et al. have performed
linkage mapping of areal BMD in crosses of SAMP6 with
SAMR1 and AKR/J.®® These workers also found a signif-
icant QTL in the corresponding chromosome 11 region.
Klein and colleagues analyzed areal (i.e., projected) BMD
in the B X D recombinant inbred strains as measured by
dual-energy X-ray absorptiometry.®" This study, like ours,
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was exploratory in nature because of the limited number of
genotypes examined. These related investigations have
identified genomic regions that overlap partially with our
results, providing independent evidence that LOD score
peaks noted in the HcB/Dem system reflect true QTLs.

It is important to note two important differences between
our experiments and the work performed by the other
groups. First, although the phenotypes investigated are re-
lated, they are not the same and therefore may be under
somewhat different genetic control. Second, the progenitors
in each investigation are different. Consequently, in each
system, a different set of loci and alleles segregates. These
caveats are particularly important in relating the data pre-
sented here with other mapping studies. Colocalization of
putative QTLs from different experiments, although provid-
ing evidence that a relevant gene is present, still requires
caution if the phenotypic measures differ, as is true for
chromosomes 1 and 11. Conversely, it is not surprising that
_ -some distinct loci contribute to bone strength in each ex-

periment, given the diversity of traits and strains studied.

- A human locus controlling bone mass (HBM) has been
mapped to chromosome 11 q12-13%? and there is evidence
that this locus may account for variation in bone mass in 2
broader-based population as well.®” The murine homo-
logue to the human HBM locus is predicted to map to near
the centromere of chromosome 19,

Thus far, mapping studies of bone properties have been
heavily weighted toward radiographically determined mineral
content as the phenotype. There are good reasons for this, most
notably the existence of several well-characterized precise
‘methods for measuring this parameter. However, as illustrated
by the data presented here and consistent with clinical experi-
ence in humans, mineral content is only one among several
factors contributing to overall bone strength and fracture
risk. 89404359 Our observations also suggest that material
properties of bone that were not investigated contribute to
differences of failure stress and Young's modulus as well as
failure load. These might include crystal size and morphology,
degree of crystal perfection, degree of substiution of carbonate
in the mineral, degree or pattern of collagen cross-linking, and
differences in noncollagenous proteins. In this study, we have
exploited the genetic homogeneity of inbred mice to allow
biomechanical data to be used as a phenotype in a preliminary
mapping study. The HcB/Dem RC strains each contain a
distinct complement of B10 alleles on a background of the

_C3H genome. Both progenitors are “wild type,” lacking mu-
tations affecting skeletal structure, function, or development in
an obvious fashion. Yet, the cumulative effects of allelic dif-
ferences between these strains lead to quite dramatic differ-
ences in the cortical bone properties of adult mice.

Recently, increased attention has been focused on how
anatomy affects bone strength in humans. Myers and col-
leagues®® related load to fracture for cadaveric human
forearms to BMD, BMC, CSA, and . They found that both
CSA and I were more predictive of biomechanical perfor-
mance than either BMD or BMC measured by dual-energy
X-ray absorptiometry, consistent with our phenotypic data.
Several groups have suggested that a longer hip axis length
(HAL) increases the risk of femoral neck fractures. 6%
Beli and colleagues have reported cross-sectional data sug-
gesting that loss of cortical bone mass in the anteroinferior-

.
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posterosuperior axis of the femoral neck-increases the risk
of hip fracture.©” They hypothesize, that formation of “gi-
ant” Haversian canals in the femoral neck contributes to the
specific loss of cortical bone mass.“® Duan and colleagues
assessed the contributions of reduced bone size and reduced
volumetric BMD to vertebral fracture risk.®® These inves-
tigators found in a cross-sectional sample that both contrib-
uted to fracture risk-and that reduced vertebral body size
accounted for 16% of the areal BMD deficit of fracture
patients relative to controls. This bone size effect accounts
for the apparent discrepancy between the work of Beamer
and colleagues, who find C57BL/6J to be a low BMD strain,

. and that of Ki¢in and colleagues, who find CS7BL/6J to be

the high BMD progenitor in the B X D recombinant inbred
system. The Beamer group follows volumetric BMD
whereas the Klein group follows areal BMD. Like C57BL/
10ScSnA, the progenitor of the HcB/Dem RC series,
C57TBLIG] is characterized by a large diaphyseal diameter,”
resulting in a bone volume~dependent increase in areal BMD.
As in different strains of mice, humans display ethnic differ-
ences in bone volume® 1261717 and bone size is a highly
heritable trait @5-811-147 Areal BMD's better performance
in predicting fracture risk compared with volumetric BMD

‘thus is seen to be the result of its inherently compound

nature—it includes a measure of bone mineralization and su-
perimposes an anatomic factor that reflects L7>76~59 Mapping
QTLs that allow resolution of the anatomic and material as-
pects of bone strength therefore is a notable step toward un-
raveling the complexities of fracture risk.

Work to date has made it apparent that family relation-
ships among genes have been conserved over evolution.
One practical result of these findings is that geries” functions

are similar in humans to their functions in model organisms.

Moreover, we have learned that the organization of chro-
mosome structure in these two species is highly conserved,
with the preservation of so-called syntenies, or groups of
physically linked genes that have remained together over
the course of evolution, Only about 200 major chromosome
rearrangements are thought to have occurred since the hu-
man and murine lineages diverged.®*-® Therefore, a sec-
ond practical consequence of the genome project’s progress

‘is that genetic mapping data from the mouse can be used to

predict the locations of corresponding human genes. The
existence of conserved synteny relationships will allow test-
ing of the roles of genefic loci identified in the mouse in
human populations.

The data presented previously are limited in several im-
portant ways. First, sample sizes are relatively small and are -
limited to 6-month-old female mice. Beamer and colleagues

- have shown that bone mass in mice does not remain con-

stant throughout adulthood and that change in BMC follows
different time courses in different strains.?? Loss of bone
mass during aging also has been established by the SAMP6
mouse, which develops osteoporosis as it ages.®® Our data
do not address any aspect of bone turnover over an individ-
ual’s lifetime.

Second, there are important differences in bone metabo-
lism between mice and humans. The mouse skeleton under-
goes virtually no osteonal remodeling,®” whereas such
remodeling is a central feature of human bone. Although
mice grow primarily during the first 4 months of life, their
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epiphyses remain open throughout their lives. The murine
estrous cycle is quite dissimilar to human menses and mice
do not undergo menopause in midlife. Each of these differ-
ences limits the applicability of the findings reported here to
human bone properties. :
Third, important limitations accompany the choice of the
HcB/Dem system. Only 24 strains were examined, limiting
the power of the linkage study to an exploratory level.
Mapping was performed with strain-averaged data, obscur-
ing intrastrain variability and weighting the individuals
from the strains with the smallest sample sizes most heavily.
Genotypic data for the HcB/Dem strains only include ap-
proximately 130 markers and their genotypes include some
relatively large untyped segments.'5!” The RC breeding’
scheme aggravates the impact of gaps in the HcB/Dem
strain distribution pattern. There are multiple opportunities
for crossing over to occur during the inbreeding process, so
that the extent of the genome spanned by each marker in RC
lines is only approximately one-fourth that spanned by
markers in a single-generation experiment.?***® There
are likely to be additional small, unidentified differential
segments between the two parental strains. Moreover, there
may be segregating QTLs that contribute to the phenotypes
examined that this experiment was unable to detect. Incor-
poration of additional markers to the HcB/Dem strain dis-
tribution pattern will allow this issue to be addressed.
Fourth, although biomechanical tests are more closely
related to fracture risk than is BMC, the fractures generated
in these tests are still artifactual with regard to fracture site
and fracture mechanism. Three-point bending of the mouse -
humerus assesses cortical bone strength, because the site is
virtually devoid of trabecular bone. The stresses that lead to
human fragility fractures and hip fractures in particular
probably differ from the fractures generated in our biome-
chanical tests in important ways. .
Fifth, not all the phenotypes studied are of equivalent ~
status. Failure load, structural stiffiess, body mass, BMI,
ash percentage, and the various diameters are measured
directly. Failure stress, modulus, CSA, and 7, in contrast, are
calculated from the directly measured phenotypes. Al-
though all measurements are subject to potential errors, only
the calculated parameters are subject to compounded errors. -
Sixth, the LOD scores of potential QTLs are sy
cally overestimated as discussed previously, primarily as a
consequence of the small number of independent genotypes
examined. This means that QTL mapping assignments
based on either recombinant inbred or RC strain data must
be confirmed in an independent breeding experiment. This
limitation applies equally to the data presented here and
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Department of - Memorandum
Veterans Affairs

Date: November 16, 2000

From: Associate Chief of Staff for Research
Subj: Research Protocol

To:  Robert Blank, M.D.

1. Your animal protocol “Genetics of Bone Strength in HcB/Dem Mice:
Intercrosses of Highly Divergent HcB Strains” was reviewed and approved by the
VA Research and Development Committee on November 7, 2000.

2. The protocol was approved by the VA Animal Research Committee on
October 18, 2000.

3. The R&D Committee also approved the acceptance of any funding that may
accompany this study. If you intend to have funds for this study deposited in a
VA account, contact Marvin Rupp (ext. 17801) to make arrangements.




UNIVERSITY OF

WISCONSIN

M A D S O N

MEMORANDUM
TO: Dr. Robert Blank
FROM: Rick Lane
Associate Director
DATE:  April 10, 2001

RE: Animal Protocol — M01525
Dr. Blank,

This memo is to provide documentation as to approvals for your animal based
research: Genetics of Bone Strength in HcB/Dem Mice: Intercrosses
of Highly Divergent HcB Strains. The protocol covering this project was
originally approved by the Middleton V.A. Hospital Animal Care Committee on
October 18, 2000. In January 2001, with the V.A. animal facility unable to
provide the necessary type of housing, the University Hospital animal care unit
was contacted as a possible alternate site. As there was available space, the
chair and attending veterinarian from the Medical School Animal Care and Use
Committee reviewed the V.A. approved protocol and approved the animal
housing. Those animals were moved into the University facility on 1/26/01.

With many researchers having joint appointments, the Middleton V.A. and
University of Wisconsin Medical School Animal Care Committees have a long
standing cooperative arrangement for dealing with and assuring appropriate
approval of protocols. This cooperation includes such things as the acceptance
of each other’s protocol formats; the shared investment/management of
specialized facilities; and cooperative training programs. To provide a cross
reference, V.A. protocols are assigned a U.W. protocol number. For your
protocol, that number is: A-53-4245-M01525-3-03-01. If there are any
questions, please feel free to contact me, 262-0400.

Cc: Dr. James Southard

Research Animal Resources Center

396 Enzyme Institute  University of Wisconsin-Madison 1710 University Avenue Madison, Wisconsin 53705-4098
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Understanding the basis of skeletal fragility is one of the major goals pursued by readers
of the Journal of Bone and Mineral Research. Over the past decade, genetic approaches have
become increasingly prominent in addressing this problem. This month’s issue of the journal
includes a report by Beamer and associates ) identifying quantitative trait loci (QTLs) for
femoral and vertebral volumetric bone mineral density (VBMD). Placing their work in context
presents an opportunity to reflect on recent progress in bone genetics and on the field’s future
directions.

Choice of Phenotypes

Fracture, not BMD, is the clinically relevant outcome and BMD is only one of several
parameters related to biomechanical performance. Therefore, in the ideal situation, one would
wish to perform genetic analyses directly on fracture rather than on surrogate traits that correlate
imperfectly with fracture. Deng and colleagues ® estimated that the narrow-sense heritability of
Colle’s fracture was about 0.25 in a cohort of white American women, meaning that genetic
constitution accounted for approximately % of total Colle’s fracture risk variation observed.
While this result indicates that the magnitude of the genetic contribution to fracture is
sufficiently large to be fruitfully pursued, important caveats must be noted. Fractures are
relatively rare and tend to occur late in life. Should the genetic basis of human fracture prove to
be quantitative, then the contributions of individual loci to the total fracture risk are likely to be
too small to allow individual QTLs to be mapped successfully with realistic sample sizes. These
considerations impose important, and possibly insurmountable, obstacles to recruiting an
adequate population to perform mapping studies of Colle’s fracture in humans. Colle’s fractures
are frequent relative to hip fractures, so the challenge of collecting an adequate sample to

perform equivalent analyses of hip fracture would be an even more daunting challenge.
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Vertebral fractures, while relatively common, do not always come to clinical attention (e.g. )

9 posing potential problems in their

and are subject to a degree of diagnostic uncertainty
study.

Investigators have adopted alternative strategies based on the use surrogate endpoints to
overcome the practical limitations of studying human fracture directly. One approach is to study
biomechanical performance in a contrived experimental scheme as an analogue for natural
fracture. This approach has the virtue of allowing functional assessment of the bone, but is
limited insofar as the fracture mechanisms in biomechanical testing differ from those of naturally
occurring fractures. Moreover, these investigations are generally performed using cadaver
specimens or specimens obtained from model organisms, imposing additional differences from
in vivo human fractures. A second approach is based on epidemiologic data and focuses on
predictors of fracture rather than analogues of fracture. The vast literature on densitometric
assessment of bone by various modalities is representative of this strategy. The same logic
underlies investigations based on instruments assessing lifestyle factors, comorbidities, and
mobility. The success of these methods is incontrovertible; indeed the WHO diagnostic criteria
for osteoporosis rely primarily on densitometric assessment . In addition, there is broad
agreement in the community regarding the risk factors for fracture (e.g. *"'?). A closer look at
the risk factor based literature reveals important limitations as well. As in the case of vertebral
fracture, markers of fracture risk are variously defined, and while they are related, they are
nevertheless distinct. This is readily apparent when comparing densitometric parameters— cross-
(13-19)

calibrating fracture risk based on T scores obtained by different techniques at different sites

poses an important problem in patient care. Similarly, there is considerable overlap among the
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data included in assessments of clinical risk factors for fracture, but cross-calibration across
instruments has not yet been achieved.

At least as important a limitation of this approach is that optimizing predictive ability
does not necessarily advance mechanistic understanding of fracture biology, a point that warrants
further elaboration. Areal BMD (aBMD) measured by dual energy X ray absorptiometry
(DEXA) is the single best predictor of fracture risk at the studied site (using lateral view at the
spine). It is well established that large bones have higher aBMDs than small bones having equal
vBMD (e.g. ®”) due to projection artifact. It is also well established that larger bones are
stronger than smaller bones having equivalent tissue strength. By combining both size and
mineral density into a single measure, aBMD achieves better fracture prediction than does
vBMD, in which the contribution of bone size is explicitly removed from consideration. Yet,
understanding the underlying bone biology requires that bone size and BMD be treated as
distinct properties ¢!,

In contrast, the biomechanical approach (reviewed by ©“**¥) seeks to partition
performance into components that promote investigation of mechanisms. The most basic
distinction is that between structural and material properties. Structural properties are those
possessed by an entire bone, and are determined jointly by its anatomy and its tissue strength.
The material properties are those of the bone tissue per se, after correction for differences in
anatomy. Distinct components of biomechanical performance can also be identified in
interpreting the load-deformation curve obtained in testing a specimen. It is also important to
note that each of these properties has a corresponding material parameter obtained by
normalizing for anatomy. Additional mechanical properties can also be obtained by different

testing schemes; for example, repetitive, low intensity loading can be used to assess fatigue.
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Similarly, the anatomic component of structural strength can be divided further. The distinction
between cortical and trabecular bone is familiar to readers of the Journal, as are ongoing efforts
to quantify various architectural bone properties.

While the framework provided by biomechanics naturally leads to efforts to analyze bone
strength into ever more refined components, such partition is not always easily achieved in
practice. Because bone is an anisotropic tissue, its biomechanical performance will vary
according to the orientation of the tissue relative to the applied load (e.g. @627y " This overlap
between anatomic and tissue components is particularly evident in considering trabecular bone
e.g. @*39). Even given these limitations, a reductionistic program explicitly pursues mechanistic
understanding.

Adopting the reductionistic approach embodied by biomechanics does not require that we
abandon epidemiology. Both epidemiologic and interventional investigations have identified
risk factors for fracture other than bone mass. Advancing age (31.32)y past personal atraumatic
fracture history (eg ''*2%), and maternal hip fracture history (12) each increase fracture risk. In
trials of alendronate and transdermal estrogen, the fracture benefit exceeded that predicted from
the observed BMD increase ®%*”. In contrast, treatment with sodium fluoride has been shown to

increase BMD, but either not to improve or to worsen fracture outcomes ©*3%)

. Taken together,
these data demonstrate that factors other than BMD, often referred to collectively as bone
quality, contribute to the material strength of bone, thereby linking these disparate research areas.
Linkage Genetics of Bone: Present Status

Several different strategies have been used to study skeletal genetics. While each

provides a potentially valuable approach, the different types of studies address somewhat

different questions “?. Only linkage studies are considered here, addressing the question “where



R.D. Blank

are genes (loci) whose segregation contributes to differences in the trait of interest located?” In
human samples, this question is distinct from that of identifying which allele of that gene is
responsible for different values of the trait. In contrast, the existence of inbred mouse lines allow
investigation of both loci and alleles to be accomplished simultaneously “V.

In humans, a locus conferring high BMD as a simple Mendelian trait has successfully
been mapped “?. Investigations by another research group implicate the same genomic region

as a QTL contributing to less dramatic variation in BMD ***?, Two other human genome scans

(45) (46)

reported evidence of possible linkage for hip and spine "’ and forearm “*. It is worth noting
that both of these investigations found evidence for a QTL on chromosome 2p in spite of the
different sites and populations studied. Each of these studies used aBMD as the phenotypic
endpoint, based on the ease, economy, safety, and acceptance of aBMD as a surrogate measure
of skeletal fragility.

“7 studied whole

In mice, a broader range of phenotypes has been studied. Klein et al.
body aBMD in the B X D recombinant inbred lines. Benes and colleagues “*® used DEXA
scanning studying vertebral aBMD in a pair of crosses between SAMP6 and either SAMR2 or
AKR/J. Shimizu and co-workers “” studied femoral cortical thickness index, the fraction of
diaphyseal cross-section occupied by cortical bone on plain radiographs, in a cross between
SAMP6 and SAMP2. Beamer and colleagues have reported two related studies, a cross between
CS57BL/6J and Cast/EiJ in which femoral vBMD was mapped ©% and a study of IGF-1 levels in a
cross between C57BL/6J and C3H/HeJ ©V. Yershov et al. ©® examined humeral biomechanical

performance and dimensions, ash percentage, and body mass in the HcB/Dem recombinant

congenic strains.



R.D. Blank

In this issue, Beamer et al. present the results of mapping femoral and vertebral vBMD in
a cross between C57BL/6J and C3H/HeJ (V. Their results are notable for several reasons. First,
a subset of the QTLs contributes to vBMD at both sites studied, while others contribute to
vBMD at only one site. This finding provides a biological context for the clinical finding of
disparate BMDs at different sites in the same individual. Second, in several cases the same
QTLs have been mapped in different crosses, using different but related phenotypes. This
provides compelling evidence that a bone mass gene is in fact being identified. Third, the
number of individuals studied in this cross was sufficient to allow testing for pairwise epistatic
interactions, which were not found. Although it is too soon to say that epistasis does not
contribute signficantly to vBMD variation in general, this group’s efforts remind the rest of us
that gene-gene and gene-environment interactions should be sought. Fourth, the authors are
unequivocal in stating their ambition to use linkage studies to help elucidate the mechanisms
underlying bone phenotypes, placing them in the reductionist camp.
The future of Skeletal Genetics

Successfully mapping QTLs is a relatively early step in understanding the genetic basis
of skeletal function. Now that the approximate locations of some vBMD QTLs are known, we
are faced with the problem of identifying which of the positional candidates thus defined are the
relevant genes. Similar research efforts in other diseases, notably type I diabetes (e.g. ****) and
other autoimmune diseases (e.g. C%°%), suggest that successfully subdividing the overall
phenotype into pathophysiologically relevant intermediate phenotypes is one of the major tasks
that lies ahead. Jepsen et al. © report an elegant example of this approach in a forthcoming
issue (please specify issue, if known) of the Journal. Subdivision of traits may lead to

phenotypes whose genetics are Mendelian rather than quantitative, greatly simplifying their
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genetic analysis, as illustrated by the high bone mass locus “?. Even if reduction to oligogenic
phenotypes is not accomplished, the discussion generated in our community through the effort
will undoubtedly stimulate new ideas about how whole-bone anatomy is established, how bone
responds to mechanical loading, how matrix proteins and minerals interact, and how bone
metabolism changes during development and aging. Each of these is already an active research
area; and their findings need to be more integrated into genetic investigations of fracture risk and
its components, including BMD. Choosing among the myriad potential intermediate phenotypes
to study will depend largely on this ongoing discussion. A second thread contributing to choice
among intermediate phenotypes will be based on technical issues. New instruments and new
analytical methods provide opportunities to define additional phenotypes (e.g. ¢**%).

Work to date has already employed a variety of different albeit related phenotypes.
Study of intermediate phenotypes, as proposed above, will add still more traits into the mix.
This presents us with the additional challenge of relating the phenotypes to each other. A
potential approach to this problem is to design future genetic experiments to include a variety of
traits and then seek evidence of pleiotropy, i.e. a single gene controlling multiple phenotypes
(526465 The data presented by Beamer and colleagues ) contribute to this effort by
distinguishing between QTLs acting at both femur and spine and QTLs acting in a site-specific

manner. Orwoll and colleagues’ studies ©¢®

of gender specific BMD QTLs apply this approach
also.
Finally, progress in genomics favors investigations based on interesting and insightful

biology. Recent completion of the human genome sequence ©”

and the pending completion of
the mouse and rat sequences will devalue some of the skills geneticists have mastered. High

density maps and microarray technologies will allow adoption of multi-generational association
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®®)  These advances

analyses having greater statistical power than traditional linkage methods

demand that the bone geneticists of the future be bone biologists first. This issue’s paper by

Beamer et al. " points the way ahead.
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ABSTRACT

Background: Enumeration of general principles for assay design using denaturing high
performance liquid chromatography (DHPLC) would greatly facilitate the process of scanning
genes for sequence variants.

Methods: Three target sequences harboring known allelic variants were studied to develop a
general DHPLC assay design strategy. These were exon 10 of the human RET gene, exon 52 of
the mouse Cola2 gene, and exon 9 of the human FAS gene. Wavemaker v.3.3.3 software was
used to analyze melting curves and determine assay conditions. GC clamps were added to PCR
primers to introduce a high T, domain to each of the target molecules. DHPLC was performed
under partially denaturing conditions using the WAVE DNA fragment analysis system.

Results: DHPLC assays of PCR-amplified sequences can be developed at the computer by
the following three simple steps. First, the target sequence should have a uniform Ty,. Second,
GC clamps of length sufficient to introduce a second melting domain with a T, > 8° above that
of the target sequence should be appended to one of the primers. Third, the DHPLC assay
should be performed at the highest temperature at which the molecule is predicted to be > 90%
double stranded.

Conclusions: Assay design principles adapted from those previously established for denaturing
gradient gel electrophoresis (DGGE) facilitate development of DHPLC mutation scanning
strategies, as both methods resolve sequence variants by virtue of differences in the melting
behavior of partially denatured DNA molecules. Use of GC clamps in DHPLC obviates the need

for empirical optimization of new assays.



Wurzburger et al.
GC Clamps for DHPLC p. 3

INTRODUCTION

Efficient, robust mutation detection methods can potentially have a major impact on the
diagnosis of genetic disorders and the identification of genetic contributions to multifactorial
disorders. Many investigations depend on relating genotypic variations to specific phenotypes.
Scenarios in which this approach is potentially useful abound. Examples include searching for
mutations of established pathogenic genes in specific syndromes (e.g. (1-3)), searching for
mutations in candidate disease genes (e.g. (1)), searching for mutations in positional candidates
for disease loci (e.g. (2-4)), and searching for polymorphisms that predispose to multifactorial
disorders or traits (e.g. (5..6)).

Such assays should ideally possess several performance characteristics (reviewed by (7,
8)). They should be sensitive and specific. They should allow easy incorporation of positive and
negative controls to allow assay performance to be monitored over time. They must require a
minimum of operator and instrument time. Finally, they should be based on principles that are
well understood so that new assays can easily be developed. This last feature is particularly
important for genetic tests since any single test assays only a minuscule fraction of the genome.

Other than sequence determination, most mutation detection strategies can be grouped
into four categories. The first are hybridization-dependent and include allele-specific
hybridization (e.g. (9)), allele-specific amplification (e.g. (10, 11)), and solid-phase resequencing
(e.g. (12)). These methods can be used without electrophoresis, making them attractive for high-
throughput applications. They are limited by requiring separate assays to be designed for each
potential mutation. The second are conformation-dependent and include single stranded
conformational polymorphism (SSCP) (13) and conformation sensitive gel electrophoresis

(CSGE) (14, 15). These methods are easily performed but are limited in sensitivity unless
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carefully optimized or run under multiple conditions and require electrophoresis. The third are
cleavage-based methods in which either an enzymatic or chemical cleavage occurs at the
positions of strand mismatches in heteroduplex DNA molecules (e.g. (16-19)). These methods
have the advantage of localizing mutations as well as detecting their presence. They are limited
insofar as they are relatively demanding technically. The fourth are melting-dependent and
include denaturing gradient gel electrophoresis (DGGE) (20), VDGGE derivatives (21-23), and
denaturing high performance liquid chromatography (DHPLC) (24). These methods are
extremely sensitive but require significant effort to design each assay. Moreover, all except
DHPLC require electrophoresis, limiting throughput.

In this report, we describe a simplified strategy for designing mutation detection assays
using the WAVE DNA fragment analysis system, an integrated, semi-automated DHPLC
apparatus. The strategy is based on the dependence of both DHPLC and DGGE on resolving
partially denatured double stranded DNA molecules. Particular attention is devoted to the use of
GC clamps with this system, allowing assay design to be carried out in a nearly algorithmic
fashion. This approach allows investigators to shift their efforts from mutation detection assay
design to interpretation of the biological consequences of detected sequence variation.
MATERIALS AND METHODS
DNA preparation: Mouse DNA was prepared from 2-3 mm of tail using the Invitrogen
(Carlsbad, CA) DNA extraction kit. Human DNA was prepared from peripheral blood
mononuclear cells using the Puregene (Minneapolis, MN) DNA extraction kit. Human subjects
provided written informed consent under protocols approved by the Memorial Sloan-Kettering
Cancer Center's IRB (25, 26) or the Hospital for Special Surgery’s IRB ((27-29)).

Choice of Polymerase Chain Reaction (PCR) targets: The DNA sequence to be scanned for
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mutations was entered into the interactive window in WAVEMAKER (version 3.3.3) software
(Transgenomic, Inc., Omaha, NE). The target must include sufficient flanking sequence so that
primers in which mutations will not be sought can be designed. WAVEMAKER displays a
position v Tr, plot that allows determination of the range of temperatures over which the
sequence denatures. Appropriate targets have uniform melting temperatures along the length of
the sequence except for lower-melting regions at either end. If the proposed target sequence
includes regions with melting temperatures differing by more than 2 to 3°C, then these should be
amplified and analyzed separately.

PCR: All amplifications were performed in 50 pl reactions including 1 U of Red Taq DNA
Polymerase (Sigma, St. Louis, MO), 0.2 mM dNTP mix (Amersham Pharmacia, Piscataway,
NJ), and 10 mM Tris-HCl (pH 8.3) containing 50 mM KCI, 1.5 mM MgCl,, 0.1% gelatin, and
20 - 50 ng of genomic DNA. Primers were designed using Primer 0.5 software (30). Primer
sequences and annealing temperatures are given in Table 1. Reactions were performed in a PE
Biosystems (Norwalk, CT) 2400 thermal cycler. Amplifications were carried out by an initial
denaturation of 3 minutes at 95°C followed by 35 cycles of 94° C X 30 seconds, Tanneating X 30
seconds, and 72° C X 30 seconds. Following amplification, samples were subjected to a final
denaturation at 95° C X 5 minutes followed by slow cooling to room temperature.

DHPLC conditions: Loading, elution, and washing of the DHPLC column was carried out with
varying combinations of 3 buffers. Buffer A contains 100 mM triethylamine acetate (TEAA),
pH 7.0 and 0.025% acetonitrile, buffer B contains 25% acetonitrile, 100 mM TEAA, pH 7.0, and
0.1 mM EDTA, and buffer D contains 75% acetonitrile. DHPLC elution buffer gradients were
generated by WAVEMAKER version 3.3.3 software. Assays were performed using the

Transgenomic, Inc. WAVE DNA fragment analysis system. Oven temperature was determined



Wurzburger et al.
GC Clamps for DHPLC p. 6

from inspection of the melting profile, choosing the highest temperature at which the target
sequence was predicted to be >90% duplex. Following the gradient elution, all remaining bound
material was washed from the column with buffer D. Sample elution was monitored by
absorbance at 260 nm.

DNA  Sequencing: PCR products were purified by passage through Microcon
microconcentrating centrifugal filter columns (Millipore, Bedford, MA) prior to sequencing.
Sequencing reactions were performed using the PE Biosystems Dye-Terminator Kit and
analyzed on a PE Biosystems 377 DNA sequencer.

RESULTS

Since both DGGE and DHPLC-based mutation detection operate on the principle of
detecting differences in melting behavior among individual species in a mixed population of
DNA molecules, we first adapted an established DGGE assay to performance on the WAVE
instrument.

Exon 10 of the RET protooncogene was chosen for this experiment. Point mutations of
various cysteine residues of exons 10 and 11 of this gene lead to multiple endocrine neoplasia
type 2 A or familial medullary carcinoma of the thyroid (31, 32). We previously developed
DGGE assays to detect pathogenic mutations in exon 10 (25, 26). The RET exon 10 sequence
was entered into WAVEMAKER with and without the 36 bp GC clamp sequence. The melting
profile of the target sequence was predicted and verified to be uniform within the target region.
Without the GC clamp, there is a single melting domain, with 'breathing' at the ends of the
molecule. Addition of the GC clamp introduces a second higher T, melting domain (Figure 1).
The target sequence therefore denatures under conditions in which the GC clamp remains

double-stranded. The melting curves generated by WAVEMAKER demonstrated that the target
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sequence would be completely double stranded at 65°C, >90% double stranded at 66° C, and
~20% double stranded at 67°C (Figure 2). WAVEMAKER also generated a gradient profile
(Table 2). We used the temperature from inspection of the melting curve rather than that picked
by WAVEMAKER to perform the assay, as WAVEMAKER does not distinguish between the
target sequence and the higher T,, GC clamp. WAVEMAKER’s temperature is generally 1°C
higher than that obtained by manual inspection of the melting curve. RET exon 10 was amplified
from subjects harboring the C620F and C620R mutations, suffering from familial medullary
carcinoma of the thyroid and MEN 2A, respectively, and from unaffected family members (26).
Mutations were detected at 66°C (figure 3), 67°C (not shown), but not at 65°C or 68°C (not
shown) when the GC clamp was included. These mutations were resolved at 60°C using a 20-
60% gradient by DGGE (25). Mutations were not detected either by DHPLC or DGGE when the
GC clamp was not used (not shown).

We next designed a mutation detection assay for the mouse Cola2°™ mutation. This
mutation is a 1 bp deletion of a G residue in the C-terminal propeptide of the gene encoding the
a2 chain of type 1 procollagen (33, 34). Mice harboring either one or two mutant alleles display
varying degrees of skeletal fragility compared to their wild-type littermates (33, 35). The degree
of skeletal fragility is determined by homo- or heterozygosity for the mutant allele and by
segregation of background genes in the system (35, 36) (Camacho, unpublished data; Blank
unpublished data). This mutation is not detectable by a restriction enzyme recognition site
polymorphism and thus far, genotyping animals for the mutation has depended either on direct
sequencing or an allele-specific amplification (37, 38).

We developed a DHPLC assay to detect this mutation following the strategy used for

RET exon 10. The melting profile of the Cola2 exon 52 was determined in WAVEMAKER and
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determined to be uniform in the target region (Figure 4a). The target sequence is > 90% double
stranded at 58°C but not at 59°C (Figure 4b). Gradient conditions were those provided by
WAVEMAKER (Table 3). Oven temperature was chosen to be 58°C based on the melting
curves shown in Figure 4b. Heterozygotes were readily distinguished from either wild-type or
mutant homozygotes when a 36 bp GC clamp was included (Figure 4c), but not when it was
omitted (not shown). Mutations were not detected at 59°C (not shown), the temperature chosen
by WAVEMAKER. A 50:50 mix of wild-type and mutant homozygous samples eluted as a
single sharp peak when unheated, but eluted as a pair of peaks when heated to 95°C and cooled
slowly (Figure 4d). These data demonstrate that these assay conditions are robust for
determining heterozygosity at the Cola2 locus, but are not adequate for determining the allele
present in homozygous samples. Moreover, the behavior of the unheated mixture reveals that
there is no difference in the elution times of the wild-type and mutant products, as the peak is not
broadened relative to the peak generated by homozygous samples. Thus, the sensitivity of
mutation detection is greater in the setting of heterozygosis than homozygosis. This finding
indicates that decreased Tr, at the site of mismatch is a critical element of mutation detection by
DHPLC.

Homozygous samples can be genotyped in a two-step assay. In the first step, the assay is
performed on a pure sample. In the second step, samples found to be homozygous are mixed
with a reference wild-type sample, denatured, reannealed and reanalyzed. Mutant homozygotes
will yield a heterozygous pattern on mixing while wild-type homozygotes will retain a
homozygous pattern on mixing.

We applied our strategy for mutation detection to the human FAS (APO-1, CD95) gene.

Mutations of this gene cause the Canale-Smith Syndrome, a disease characterized by
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hypergammaglobulinemia, systemic autoimmunity, lymphadenopathy and splenomegaly (27,
39). We previously identified mutations in 14 probands with this disorder, and patients
heterozygous for an A to G change at cDNA nucleotide 913 resulting in D244G and a G to C
change at cDNA nucleotide 883 resulting in R234P missense mutations were studied here (27,
29). These patients each suffered the typical clinical features of the syndrome as previously
described (patients 7 and 8, respectively of (29)).

DHPLC analysis of these patients and an unaffected sib of one of them are summarized
in Table 4 and Figure 5. As we observed for RET and Cola2, the mutations were readily
detected with a GC clamp at the temperature predicted to be optimal by inspection of the melting
curve. Again as observed for the other assays, omission of the GC clamps did not allow us to
detect the mutations (not shown).

DISCUSSION

Heteroduplexes include mismatches of one or more base pairs, resulting in early melting
of the mismatched region. DHPLC allows resolution of heteroduplex from homoduplex DNA
molecules based on differences in their retention time in the column under partially denaturing
conditions, with heteroduplex molecules eluting earlier. This behavior mirrors heteroduplexes’
lower Tr’s and is similar to retardation of electrophoretic transport at different points along a
denaturing gradient gel. In DGGE, mutations in the highest Ty, domain are resolved poorly, if at
all. We reasoned that while the analytical technology differs in DHPLC, the principle of
heteroduplex detection should be the same as in DGGE and that inclusion of GC clamps would
facilitate mutation detection. The inability to detect sequence variants in the highest T,,, domain
may explain the anecdotally poor ability of DHPLC to detect mutations in short amplicons (K.

Hecker, personal communication), which often include only a single melting domain.
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We have established a simple and general approach to designing new mutation screening
assays by DHPLC. First, the target region’s sequence is entered into WAVEMAKER or an
equivalent melting analysis program and assessed for uniformity of Ty, If this condition is not
satisfied, alternative primers that allow for a uniform Ty, are chosen. Next, a GC clamp of
sufficient length to create a high-Ty, domain is appended to one of the primers. Melting curves
of the PCR product are calculated and the highest temperature at which the target sequence is
>90% duplex is chosen for assay performance. WAVEMAKER determined elution conditions
are used.

The trio of assays described here demonstrate that inclusion of a GC clamp allows
detection of mutations by DHPLC under conditions that can be fully established prior to assay
performance, using the melting curves generated by WAVEMAKER. The experiments
presented above do not exclude the development of assays without GC clamps, but rather show
that the conditions identified by WAVEMAKER work well without further optimization when
GC clamps are included.

Sheffield and colleagues demonstrated the utility of GC clamps in designing DGGE
assays (40), showing that the inclusion of a clamp allowed detection of mutations in the murine
B™°T olobin gene that were undetectable without clamping. The additional sensitivity arose
from detection of mutations in the highest Ty, domain of the target sequence. Subsequent
sensitivity analyses of DGGE have consistently found that analyses performed with GC clamps
have sensitivities of ~95% and specificities approaching unity (e.g. (41-44)). The theoretical
basis for this increase in sensitivity is that resolution of the various molecular species present
occurs primarily when the individual molecules are partially denatured. Inclusion of a GC clamp

provides an artificial, high Ty, domain into the molecules being analyzed, allowing the target

-10 -
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sequence to occur in the context of a low Ty, domain. Our data suggest that resolution of the
various molecular species by DHPLC also occurs primarily when these have partially denatured,
so that the principles guiding design of DGGE assays can be applied to DHPLC mutation
detection.

In the assays described here, the GC clamp had a melting point 8-13°C higher than the
target sequence, while the target sequence varied in Ty, by no more than 3°C. We therefore
suggest that investigators include GC clamp sequences sufficiently long to provide an 8°C
increment in Tm relative to the target. The required length will vary according to the Ty, of the
target sequence. |

Theoretically, psoralen clamping provides an alternative to GC clamping by generating a
covalent interstrand bond rather than by raising the Ty, of a region of the target molecule (45).
The covalent bond introduced by psoralenation and subsequent UV light exposure effectively
clamps one end of the molecule regardless of temperature. The advantage of psoralen compared
to GC clamping is that the clamp need not be changed from assay to assay; the disadvantage is
that an additional UV crosslinking step must be added prior to analysis. However, we have not
conducted any experiments with psoralen clamps and cannot comment on whether this approach
would perform as well in practice as in theory.

Electrophoretic mutation detection assays are difficult to perform on a large scale, since
casting and loading gels are tasks that are difficult to automate. Because DGGE and SSCP suffer
from these limitations, the DHPLC-based assay is more readily adaptable to a high-throughput
setting. The WAVE system can load samples automatically from a 96-sample block and process
each sample in approximately 6 to 9 minutes. This allows investigators to perform mutation

screens at higher throughput and with less hands-on time than would be possible by gel-based

-11-
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methods. Further improvements in throughput might be achieved by pooling samples prior to
DHPLC analysis, as has been done for gel-based methods (e.g. (46)).

High sensitivity and specificity have been reported for DHPLC in a growing body of
analyses (e.g. (47-53)). These reports document that carefully performed DHPLC equals or
surpasses other mutation screening methods’ accuracy.

The greatest limitation on throughput, however, remains the time necessary to design
mutation detection assays. To our knowledge, only one previous report addressed assay design
optimization (54). These authors recommended performing assays at the Ty, determined by the
melting analysis program DHPLCMelt and 2°C above that temperature. We have demonstrated
that inclusion of GC clamps obviates the need for tedious assay optimization. GC clamps of a
length sufficient to create a domain with T,, 8°C greater than that of the target sequence allows
an experimenter to develop a working assay in less than one hour. As genomic analysis moves
from determination of additional sequence data to understanding the biological consequences of
sequence variation, the ability to perform mutation screening efficiently will become ever more
valuable. The WAVEMAKER based algorithm for establishing DHPLC conditions described
here will facilitate this.
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Table 2. Assay Conditions for RET10

Oven Temperature = 66°C, Flow Rate = 0.9 ml/min

Time %A %B %D
0.0 56 44 0
0.5 51 49 0
5.0 42 58 0
5.1 0 0 100
5.6 0 0 100
5.7 56 44 0
8.2 56 44 0

221 -



Wurzburger et al.
GC Clamps for DHPLC

Table 3. Assay Conditions for Cola2

Oven Temperature = 58°C, Flow Rate = 0.9 ml/min

Time %A %B %D
0.0 57 43 0
0.5 52 48 0
5.0 43 57 0
5.1 0 0 100
5.6 0 0 100
5.7 57 43 0
8.2 57 43 0
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Table 4. Assay Conditions for Fas

Oven Temperature = 59°C, Flow Rate = 0.9 ml/min

Time %A %B %D
0.0 55 45 0
0.5 50 50 0
5.0 41 59 0
5.1 0 0 100
5.6 0 0 100
5.7 55 45 0
8.2 55 45 0
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FIGURE LEGENDS

Figure 1. Melting profiles for RET10 without (top) and with (bottom) inclusion of a 36 base
GC clamp on the 3’ amplification primer. The bold lines under the base-pair axis indicate the
extent of the primer sequences.

Figure 2. Predicted melting behavior of GC clamped RETI0 amplicons at 65°, 66°, and 67°.
The GC clamp remains double stranded at all 3 temperatures. The target sequence is > 90%
double stranded at 65° and 66°, but not at 67°.

Figure 3. DHPLC elution profiles for 3 RET genotypes at 66°. Heterozygotes harboring the
C620F and C620R mutations are readily distinguished from normals and from each other.

Figure 4. Cola2 DHPLC assay. The GC clamped melting profile is shown in panel A. The
predicted melting behavior of Cola2 amplicons at 57°, 58°, and 59° are shown in panel B.
Resolution of Cola2 heterozygotes from homozygotes is shown in panel C. Inability to resolve
+/+ homozygotes from oim/oim homozygotes is shown in panel D.

Figure 5. FAS DHPLC assay. The GC clamped melting profile is shown in panel A. The
predicted melting behavior of FAS amplicons at 58°, 59°, and 60° are shown in panel B.

Resolution of R234P and D244G heterozygotes from a wild-type homozygote is shown in panel

C.
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Disease-causing Missense Mutations in the PHEX Gene Interfere with
Cellular Trafficking of PHEX Protein. Y. Sabbagh,*' G Boileau,*? P, Crine,*’ L.
DesGroseillers,*? H. S. Tenenhouse.? !Biology, McGill University, Montreal, PQ, Canada,
2Biochemistry, Universit¢ de Montréal, PQ, Canada, 3Biology, Pediatrics and Human
Genetics, McGill University, Montreal, PQ, Canada.

Mutations in the PHEX gene are responsible for X-linked hypophosphatemia (XLH),
the most prevalent form of inherited rickets in humans. The PHEX gene encodes a type II
integral membrane glycoprotein with significant homology to the M13 family of metal-
lopeptidases, which includes neutral endopeptidase 24.11 (NEP). We undertook to examine
the effects of missense mutations on the cellular trafficking of PHEX protein. Four mutant
PHEX cDNAs were generated by PCR mutagenesis: C85R, G579R, S711R, and E581V.
The first three mutations were identified in patients with XLH. The fourth mutation, in the
conserved catalytic domain (HEXXH), was examined in NEP and found to abolish cata-
Iytic activity but not to affect transport of the protein to the cell surface (Devault et al, J
Biol Chem 263:4033, 1988). The cDNAs were sequenced to confirm that only the muta-
tions specified above had been introduced. HEK 293 cells were transfected with the
pcDNA3/RSV expression vector containing the wild type and mutant PHEX ¢cDNAs and
stable cell lines were established for each by selection of transfected cells with Geniticin.
PHEX protein expression in crude membrane fractions was examined by western blotting
using a monoclonal antibody generated against 2 human recombinant PHEX protein frag-
ment (K,;-Ezq4). To assess whether expressed proteins were targeted to the plasma mem-
brane, they were subjected to endoglycosidase digestion with PNGaseF and EndoH. The
wild type protein, as well as the E581V mutant, were PNGaseF sensitive but EndoH resis-
tant, suggesting that the proteins are fully glycosylated and expressed at the cell surface.
Furthermore, biotinylation of cell surface proteins provided evidence for cell surface
expression of the wild type and E581V proteins, in agreement with the endoglycosidase
results. In contrast, mutants C85R, G579R and S711R, were PNGaseF and EndoH sensi-
tive, indicating that the mutant proteins are not fully glycosylated and, therefore, retained
intracellularly. In summary, we have shown that three PHEX missense mutations identified
in XLH patients result in the synthesis of proteins that are not fully glycosylated. Our
results suggest that the mutations result in misfolding of the nascent polypeptides and
thereby interfere with the transport of the protein to the plasma membrane.
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See Friday Plenary number F120.
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See Friday Plenary number F121.

SA122

"Bone Strength Variability in Mice Heterozygous for the Cola2’™
Mutation. J. A. Wexler,*! R. Gupta,*? Y, Yershov,*? A. Kumar,*? R. D. Blank.'?
1Endocrinology, Diabetes and Metabolism, Comnell University Medical Center, New York,
NY, USA, 2Division of Research, The Hospital for Special Surgery, New York, NY, USA.

Osteogenesis imperfecta (OI) is an inherited disorder of connective tissue caused by muta-
tions of either the &1 or 02 procollagen genes resulting in qualitative or quantitative abnormal-
ities in type I procollagen synthesis. Variation of disease severity among individuals with OI
harboring the same collagen mutation has been described but is poorly understood. We previ-
ously mapped genes affecting bone strength and related traits in HcB/Dem recombinant con-
genic mice. We hypothesize that the segregation of background genes modifies the disease
severity of Ol and sought to test this by measuring biomechanical performance and supporting
phenotypes in Cola2®™* heterozygotes. Mice were analyzed at 17 weeks of age. At sacrifice,
animals were radiographed for evidence of fractures and image analysis, long bones were har-
vested and left humeri were subjected to 3-point bending. No spontaneous long bone fractures
were observed in these mice Selected phenotypes are summarized below.

Parameter Males (N=119) Females (N=106) P-value
Mass (gm) 345149 260+3.8 <0.001
Failure Load (N) 8.42+1.46 7.05+1.21 <0.001
AP OD (mm) 1.00 £ 0.08 0.91 +0.07 <0.001
AP ID (mm) 0.48 +0.07 0.43 + 0.06 <0.001
ML OD (mm) 1.46 +0.10 1.36 + 0.09 <0.001
ML ID (mm) 0.69 +0.92 0.66 +0.08 0.005

Stiffness (N/mm) 27.84+6.11 23.21+5.09 <0.001

We constructed a stepwise linear regression model for failure load as a function of the other
directly measured traits with the equation: failure load = - 0.905 + 0.154 stiffness + 2.649 ML
OD +0.0325 mass. The A R? for stiffness is 0.615 (p<0.001), for ML OD is 0.0362 (p<0.001)
and for mass is 0.0138 (p=0.003). This model demonstrates that 66% of failure load is deter-
mined by directly measured parameters. Sex was not an independent predictor of failure load.

Linkage mapping in the Cola2®™* mice is compared to our previous HcB/Dem data. This
study demonstrates strong similarities to the HcB/Dem results with regard to both the mecha-
nistic determinants of structural strength and to their genetic determination.

RD Blank is a stockholder of PE Biosystems.
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SA125

Effects of Lower Leg Lengthening on Bone Mineral Density apq S
Tissue Composition of Legs in a Patient with Achondroplasia. %L‘f‘
Ikata,* H. Yonezu.* Orthopedic Surgery, The University of Tokushima, Japan, T

Achondroplasia is a common type of rhizomelic dwarfism, resulting in dispropory;,
between the height of the trunk and that of extremities. In the present study, we app“.j‘"
dual energy X-ray absorptiometry (DXA) to measure bone mineral density, lean masg a;'j
fat mass of legs in a fifteen-year-old girl with achondroplasia to assess the effects of 1.
lengthening on bone mineral density and soft tissue composition of the legs.

Lower leg lengthening was performed on bilateral tibias by means of callus distractj,
(callotasis) using a unilateral dynamic external fixator. As for schedule of leg lengtheni,
the waiting period was 10 days, distraction period was 180 days at a rate of | mm/day, new
tralization period was 84 days, and dynamic load period was 98 days. After dynamic Io;; d
period, the external fixation was removed from the tibial shaft. As a result, overall tre;..
ment time was 372 days in this case, and the healing index Was 42 days/cm. '

The length of bilateral lower legs increased 9 cm, and consequently her height increase
from 118 cm to 127 cm. L2-4BMD did not change after leg lengthening, whereas 11,
body BMD decreased to 94.2% of the preoperative total body BMD. The BMD of the riyi,
leg and left leg decreased to 87.8% and 89.5% of the respective preoperative values, Th.
lean mass of legs increased following leg lengthening, and the degree of increase of Icq,
mass of leg was greater on the right side than on the left side. The fat mass of both |,
increased following the procedure, and the degree of increase was greater on the left sid.
than the right side. The results showed that lower leg lengthening induced an i in fu
and lean mass of the legs, whereas the BMD of bilateral legs decreased compared with i
preoperative BMD.

of le
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SA128

Type II Autosomal Dominant Osteopetrosis (Albers Schonberg Disease)
Results from an Infantile Resorption Defect. O.D. Benichou,*' M. Brazier,*’ (.
Baudoin*! M. de Vemejoul.! 'Unit 349, INSERM, Paris, France, “Biochinit
Endocrinienne et Osseuse, CHU Groupe Hospitalier Sud, Amiens, France.

Type I autosomal dominant osteopetrosis (ADO II) is a rare inherited disease mainly
characterized by a diffuse skeletal sclerosis which predominates in vertebral endplates.
iliac wings, and skull base. Paradoxically, the main clinical manifestation is a strong pre-
disposition to fractures. Although other forms of osteopetrosis have been clearly attributed
to a bone resorption defect, the bone remodeling disturbance responsible for ADO II has
not been proved so far.

We evaluated urinary hydroxylysylpyridinoline (urinary HP) by HPLC in 21 ADO il
patients (17 adults and 4 children) and 46 normal matched controls. Six of the 21 ADOII
adults (aged 22 to 71 years; mean 47.5) underwent lumbar spinal (L) and femoral neck (F)
bone mineral densitometry at TO and 2.8 to 4 years later (mean: 3.6 years). All available
radiographs from these 21 subjects were reviewed.

Osteopetrotic adults had elevated levels of urinary HP (mean HP: 45+25) when com
pared to controls (mean HP: 30+16) (p=0.024) while osteopetrotic children had low 'levtlb‘
of HP (mean HP: 108+39 unit) as compared to controls (mean HP: 182:+55), indicating
infantile resorption defect (p<0.012).

Lumbar and femoral bone mineral density (BMD) respectively increased by | 3 and
1.7% during the 3.6 years survey. This small increase was far from statistical signlﬁcaﬂcf
(respectively p>0.89 and p>0.86), but could result from the short survey as c:ompzlrﬂf1 tod
lifetime. However, these slight variations of BMD were positive in 7 cases and negative '
4 cases, suggesting that BMD was overall stable during this period. We also compared
radiographs of the whole skeleton in one patient at the age of 17 years and 33 years later.
No modification of the bone sclerosis could be observed cither in distribution or if int™-
sity.

ty’l‘hese biochemical, radiologic and densitometric data suggest that the pathogenic P“"}
cess responsible for ADO 1I involves a resorption defect that is active during skele®
growth, but most likely stabilizes spontaneously with adulthood. The mechanism of this
stabilization is unknown but may involve an increased osteoclast recruitment since W¢ an
others previously found an elevated plasmatic TRAP activity in ADO II adults.
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Establishment and Functional Characterization of Kidney Cell Lines
Derived from Osteosclerotic (o¢/oc) Mutant Mice. S. Barale,*! M. Tauc,*? 1. C.
Scimeca*! H. Parrinello,*' P. Hofan,*? P. Poujeol,*? G F, Carle *! 'IAG - UMR 6549
CNRS, Université de Nice-Sophia Antipolis, Nice, France, 2UMR 6548 CNRS, Université
de Nice-Sophia Antipolis, Nice, France, 3Service d'Anatomo-Pathologie, Hopital Pasteur,
Nice, France.

Osteosclerosis (oc) is an autosomal recessive lethal mutation which impairs bone
resorption by osteoclasts, and induces a general increase of bone density in affected mice.
We have recently shown that the gene encoding for the 116 kDa subunit of the vacuolar
proton ATPase (V-ATPase) located on mouse chromosome 19, bears a 1.6 kb deletion in
oc/oc mice between intron 1 and exon 3, and removes the translation start site of OC116.

V-ATPase is expressed in a polarized fashion in ruffled borders of osteoclasts and in the
basal striations of proximal convoluted tubules (PCT). Ultrastructural examination of renal
PCT of oc/oc mice exhibit abnormal basal striation as reported by Nakamura et al. (FEBS
Letters 401 (1997) 207-212). In order to better characterize the effects of the oc mutation
on V-ATPase function, we established PCT cell lines derived from kidneys of wild type
and oc/oc mice. Functional tests based on proton transport are being used to test recombi-
pant molecules of the MMUOC116 gene.

M1

Emergence of Fracture-resistant Cola20im/oim pice N, P_Camacho,' E. A.
MecCarthy*? S. Jain,*' R. Gupta*' R. Wurzburger*' C. L. Raggio,' R. D. Blank !
IDjvision of Research, The Hospital for Special Surgery, New York, NY, USA,
2Neomatology, New York Comell Hospital, New York, NY, USA.

There is significant intra-familial phenotypic variation among kindreds harboring type I
collagen mutations, presenting as differences in the severity of osteogenesis imperfecta
(OI). Although it is likely that segregation of loci other than the type I collagen genes con-
tributes significantly to clinical presentation, the identity of these modifying loci remain
unknown. The Cola2 ®™2™ (oim/oim) mouse is a naturally occurring animal model of
moderate-to-severe OI and has historically been maintained on an outbred B6C3 back-
ground. It therefore provides an ideal system for assessing the role of genes encoding pro-
teins other than collagen on OI severity. The purpose of this study was to determine if
inbreeding oim/oim mice would generate offspring displaying an attenuated phenotype. If
so, these mice would provide a basis for genetic analysis to reveal modifying loci.

Heterozygous oim/+ breeder mice obtained from the Jackson Laboratory (Bar Harbor,
ME) produced litters of 6-10 mice, which segregated at the Cola2 locus at the expected
1:2:1 ratio. Mice shown to be Cola2 ®™0im were subjected to 5-6 subsequent generations
of brother-sister mating. By generation N6 and N7, the bone properties of these partially
inbred (IB) oim/oim mice (n=22) were compared to those of oim/oim offspring (N1) (n=1 9)
obtained from original Jackson Lab breeders and their N1 offspring at 14 weeks of age.
The comparision indicates that the IB seem to have modifying genes which allow for
increased bone strength and decreased fracture rate:

M112

Bone Mineral Content is an Important Contributing Factor iy the
Maintenance of an Intact Vertebral Shape in Children with OSteogenesis
Imperfecta. D. Kok.*! A, Kerssen*! C. S. P. Uiterwaal,** A. J. VanDongen,*3 p p ,
Kramer,** R, H. H. Engelbert,*> H. E. H. Pruijs*' D. H. Schweitzer,” R. J. B. Sakkers +!
Ipediatric Orthopedics, UMCU-WKZ, Utrecht, Netherlands, “Epidemiology, UMcy
WK2Z, Utrecht, Netherlands, 3Nuclear Medicine, UMCU, Utrecht, Netherland;
4Radiology, UMCU-WKZ, Utrecht, Netherlands, *Pediatric Physiotherapy, UMCU-wk
Utrecht, Netherlands, SEndocrinology, Reinier de Graaf Groep, The Hague, Netherlangs, ’

Osteogenesis imperfecta is a heterogeneous disorder of collagen with multiple phen,,.
typic expressions. In a previous study, our group has shown clear correlations betweey
DXA outcomes at the lumbar spine and the os calcis and functional capabilities of the ing;.
vidual children. The current study aims to analyze possible relationships between D,
outcomes and vertebral deformities in these children. Fifty one children (25 boys and 26
girls, mean age 10.5 (SD 4.2) and 11.0 (SD 3.5), respectively) with osteogenesis imper.
fecta were studied in a cross-sectional design. Excluded were all children either with previ.
ous or with current use of bisphosphonates and with missing values for either DXA of the
lumbar spine or the os calcis. A DXA ement of the lumbar spine (L1-L4) was mage
as well as a DXA of the os calcis at both sides and the mean value of these calcanea|
DXA's was calculated. X-rays were made of the spine. Vertebral geometry, defined by the
anterior/posterior (A/P) and mid/posterior (M/P) vertebral body height ratio's, was many-
ally measured (L1-L4). After calculating the mean of A/P and M/P ratio's of the lumbar
vertebrae L1-L4, a wedge deformation was defined as an AP ratio of less than 0.8 or more
than 1.2. Biconcavity was defined as an MP ratio of less than 0.8. Multiple regression anaj-
yses were performed between DXA outcomes, age and the two main geometrical types of
vertebrae (type 1: normal shape (25 patients) and type 2: either wedge or biconcave shape
(26 patients)). The results are shown in the table.

Lumbar spine (L1 - L4) Calcaneus
BMC (g/em) | BMD (g/cm2) | BMC (g/cm) { BMD (g/em2)
Mean group difference | Unadjusted 2927 -0.12 (0.05)* 0.6(0.7) -0.06 (0.04)
Age adjusted | 6.4 (2.3)** | -0.17 (0.05)*** | -1.2(0.6)* | -0.08 (0.04)*

Mean group differences (SEM) are obtained by subtracting the mean value of those with
deformed vertebrae (n=26) from the mean value of those without deformed vertebrac
(n=25). * =p < 0.05, ** = p <0.01, *** =p < 0.0001

In conclusion, in children with medically untreated osteogenesis imperfecta, a positive
correlation is seen between bone mineral content and the vertebral geometry, but only after
adjustment for age. The results clearly indicate the importance of the quantity of mineral-
ized bone in the geometrical preservation of vertebrae in osteogenesis imperfecta. Increas-
ing the quantity of mineralized bone with medical treatment may therefore alter the natural
course of the disease. For this reason, clinical randomized prospective trials with bisphos-
phonates are currently conducted.

Gain in BMD And Grip Strength after One Year of Pamidronate
Treatment in 132 Children with Osteogenesis Imperfecta. H. Plotkin, K.
Montpetit,* S. Cloutier,* N. Bilodeau,* N. Gervais,* M. Rabzel,* R. Travers, E H.
Glorieux. Genetics, Shriners Hospital for Children, Montreal, PQ, Canada.

Osteogenesis imperfecta (OI) is a rare disease characterized by osteopenia and bone fra-
gility. Bisphosphonates has proven to be effective to increase bone density, decrease pain
and decrease the number of fractures in children with OL. We present here the results of the
| density (BMD) measured by DXA (Hologic 4500A) and bilateral

grip :trength (GS) measured with a hand dynamometer (average of three consecutive mea-
surements, expressed as Z-score for age) in a group of patients with Ol treated with pam-
idronate IV for one year. Age at start ranged from 0.1 to 21 years of age (mean 7.7 & 4.9).

N1 B p M113

Fractures 3216 1£1.1 <0.001

Weight 253412 23.7+2.1 0.004

Length 15.25 +0.37 15.59 +£0.69 NS

AP Outer Diam. 1.49+0.20 1.61 £0.19 NS

h in bone mi

ML Outer Diam. 1.1540.11 1.27 +£0.17 0.018

Density metaphyseal 1.02 £0.33 1.57 £0.58 0.002 Jeron

N

The stresses associated with breeding therefore appear to be sufficient to serve as the
selective pressure for bone strength genes in this system. Genotypes of the IB mice are
related to the locations of bone strength loci previously mapped in HcB/Dem recombinant
congenic mice.
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patiens had type I OI, 30 type III, 41 type IV, 9 type V and 33 patients could not
be classified as per the Sillence classification. Patients received pamidronate at a dose of 3
mg/kg/cycle every 4 months (>3 years of age), or 1.5 mg/kg/cycle every 2 months (<3
years of age).

BMD Z-score increased from -5.2 + 1.4 to -3.6 + 1.4 (n=132) and GS Z-score of the
dominant side increased from -2.60 # 1.07 to -2.15 + 1.25 (p<0.01) in the patients a5 2
group (n=50). Grip strength was low at baseline in all subjects, and increased with treat-
ment in all. Progress was faster than in normal subjects for the milder forms.

B |
GS Z 12 mo®

Type n | BMDZstart | BMDZ 12mo. | N | GSZ Start?

i 19 | 41:08 28+06% | 11| -219%07 | -115+08*
I 30 | 61x12 43+13* 8 | -330+08 314105
v 41 53+1.2 35+12¢ |20 25711 | -197%13°
v 9 49+13 -34+13% 5 | -2.87+0.7 -2.78+07
? 33 53+16 | --3.8+18* 6 | -218%16 159109

¢ dominant side *p<0.05

In this larger group of patients, gain in BMD (Z-score) was similar to the one observed
in a first cohort of 30 patients (-5.3 to -3.4). . .
Muscle force as assessed by grip strength increased in children with all types oL This
quantifies the positive clinical effects of the treatment. Whether these results are directly

related to the drug effect or are rather the consequence of the decrease in pain expefienced
by all subjects, remains to be evaluated.




Use of Representational Difference Analysis to Identify Candidate RFLPs Linked to Modifiers
of the Murine Cola2oim/oim Osteogenesis Imperfecta Phenotype

A.N. Patani,” A. Pincavage,*2 J. Bankston, > N. P. Camacho,’ R. D. Blank.'

1. Endocrinology/Medicine, University of Wisconsin, Madison, WI, USA, 2. Research
Division, Hospital for Special Surgery, New York, NY, USA.

The Cola2°™™ mouse harbors a nonsense mutation in the gene encoding the o2 chain of type I
collagen and consequently produces type I collagen composed of o1 homotrimers rather than
(al)z(a2) heterotrimers. This mutation is maintained on an outbred B6C3 background, but we
. have noted that inbreeding results in attenuation of the bone fragility phenotype that is
characteristic of oim/oim mice. The outbred animals averaged 3.2 + 1.6 long bone fractures each
under normal cage activity while the partially inbred animals averaged 1.0 + 1.1 long bone
fractures. In an attempt to identify loci whose segregation modifies the oim/oim phenotype, we
used pools of genomic DNA prepared from outbred and partially inbred oim/oim animals to
perform representational difference analysis. This PCR-assisted subtraction method results in
preferential amplification of restriction fragments present exclusively in one of the two DNA
sources. We amplified representative populations of BamH]1 restriction fragments from the
outbred and inbred DNA pools by PCR to generate “amplicons.” We iteratively subtracted
outbred from inbred amplicons and amplified the difference products. Following 3 rounds of
subtraction and amplification, difference products were cloned into a plasmid vector and
analyzed. Unique, polymorphic clones obtained by this method are putative markers for genes
that modify the oim/oim phenotype.  Representational difference analysis provides a
complementary approach to linkage mapping in localizing genes of interest.



Geometry as a Heritable Determinant of Bone Strength. D.H.Goddard'? C. Goddard?, J.
Hect4, E. Kim® , E.R. Myers3, R. D. Blank® and R.S. Bockman®. "New York Methodist
Hospital, & *Arthritis and Osteoporosis Center, Brooklyn, NY, *Hospital for Special
Surgery, NY, NY, ‘HAFTR High School, Lawrence, NY

Fracture susceptibility is determined by a combination of genetic and environmental
factors, which act in concert to establish whole bone strength. Whole bone strength
depends on the mineral and organic content as well as geometry and the integrity of the
structural components of the bone. Recent studies have focused on bone geometry as a
potential predictor of fracture risk in specific family groups with high fracture
susceptibility. Hypothesizing that individuals with similar volumetric bone mineral
densities (vBMD) might differ markedly with regard to bone geometry, we used
peripheral QCT scans of the forearm to measure vBMD, bone diameters, and to calculate
the axial moments of inertia (I) in a 3-generation family. Typical scans of the radius
using a Stratec XCT-2000, peripheral QCT are shown for the 68 year old father, the 67
year old mother and the 45 year old daughter in the figure below.

Father Mofher
vBMD I
(mg/cc)
father 1140 1379
mother 1225 628
e daughter | 1215 | 356
Béughter

While mother and daughter have similar vVBMDs, they display considerable differences in
the cortical diameters. This results in large differences in the calculated axial moment of
Inertia. It is not possible to determine the contribution of aging to the mother-daughter
difference in bone size from these data alone. A striking sexually dimorphic difference
was observed in the I values for the father and mother. All members of this family have
low BMD values, however, it is the striking difference in bone size that highlights the
potential importance of geometry as a determinant of bone strength and in evaluating
fracture susceptibility.




